BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36905549)

  • 1. New insights into persulfate decomposition by soil minerals: radical and non-radical pathways.
    Peng F; Wang X; Fang G; Gao Y; Yang X; Gao J; Wang Y; Zhou D
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55922-55931. PubMed ID: 36905549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of Interaction between Persulfate and Soil Constituents: Activation, Free Radical Formation, Conversion, and Identification.
    Fang G; Chen X; Wu W; Liu C; Dionysiou DD; Fan T; Wang Y; Zhu C; Zhou D
    Environ Sci Technol; 2018 Dec; 52(24):14352-14361. PubMed ID: 30424600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials.
    Liu H; Bruton TA; Doyle FM; Sedlak DL
    Environ Sci Technol; 2014 Sep; 48(17):10330-6. PubMed ID: 25133603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneously activation of H
    Ding J; Shen L; Yan R; Lu S; Zhang Y; Zhang X; Zhang H
    Chemosphere; 2020 Dec; 261():127715. PubMed ID: 32717514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.
    Liu H; Bruton TA; Li W; Buren JV; Prasse C; Doyle FM; Sedlak DL
    Environ Sci Technol; 2016 Jan; 50(2):890-8. PubMed ID: 26687229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of Peroxymonosulfate by Subsurface Minerals.
    Yu M; Teel AL; Watts RJ
    J Contam Hydrol; 2016 Aug; 191():33-43. PubMed ID: 27209171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persulfate activation by subsurface minerals.
    Ahmad M; Teel AL; Watts RJ
    J Contam Hydrol; 2010 Jun; 115(1-4):34-45. PubMed ID: 20439128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of phenol contaminated soil using persulfate activated by ball-milled colloidal activated carbon.
    Annamalai S; Septian A; Choi J; Shin WS
    J Environ Manage; 2022 May; 310():114709. PubMed ID: 35219205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms on the Impacts of Alkalinity, pH, and Chloride on Persulfate-Based Groundwater Remediation.
    Li W; Orozco R; Camargos N; Liu H
    Environ Sci Technol; 2017 Apr; 51(7):3948-3959. PubMed ID: 28263583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness and mechanism of cyanide remediation from contaminated soils using thermally activated persulfate.
    Wei Y; Chen S; Ren T; Chen L; Liu Y; Gao J; Li Y
    Chemosphere; 2022 Apr; 292():133463. PubMed ID: 34974037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-induced oxidation of ceftriaxone by persulfate in the presence of iron oxides.
    Kaur B; Kuntus L; Tikker P; Kattel E; Trapido M; Dulova N
    Sci Total Environ; 2019 Aug; 676():165-175. PubMed ID: 31039536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of soil organic matters and minerals on hydrogen peroxide decomposition in the soil.
    Molamahmood HV; Qin J; Zhu Y; Deng M; Long M
    Chemosphere; 2020 Jun; 249():126146. PubMed ID: 32086061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of mineral-immobilized pyrene by ferrate oxidation: Role of mineral type and intermediate oxidative iron species.
    Wang Z; Wang F; Xiang L; Bian Y; Zhao Z; Gao Z; Cheng J; Schaeffer A; Jiang X; Dionysiou DD
    Water Res; 2022 Jun; 217():118377. PubMed ID: 35397372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of dissolved silica on H₂O₂ decomposition by iron(III) and manganese(IV) oxides: implications for H₂O₂-based in situ chemical oxidation.
    Pham AL; Doyle FM; Sedlak DL
    Environ Sci Technol; 2012 Jan; 46(2):1055-62. PubMed ID: 22129132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step synthesis of natural montmorillonite/hematite composites with enhanced persulfate catalytic activity for sulfamethoxazole degradation: Efficiency, kinetics, and mechanism.
    He P; Xiong Y; Chen Y; Liu M; Zhu J; Gan M
    Environ Res; 2022 Mar; 204(Pt C):112326. PubMed ID: 34748776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical Functions of Soil Components for In Situ Persulfate Oxidation of Sulfamethoxazole: Inherent Fe(II) Minerals-Coordinated Nonradical Pathway.
    Liang J; Duan X; Xu X; Zhang Z; Zhang J; Zhao L; Qiu H; Cao X
    Environ Sci Technol; 2024 Jan; 58(1):915-924. PubMed ID: 38088029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of radical and non-radical activated persulfate systems for the degradation of imidacloprid in water.
    Hayat W; Zhang Y; Hussain I; Huang S; Du X
    Ecotoxicol Environ Saf; 2020 Jan; 188():109891. PubMed ID: 31740236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrite enables persulfate activation for efficient atrazine degradation.
    Wang X; Wang Y; Chen N; Shi Y; Zhang L
    Chemosphere; 2020 Apr; 244():125568. PubMed ID: 32050347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials.
    Pham AL; Doyle FM; Sedlak DL
    Water Res; 2012 Dec; 46(19):6454-62. PubMed ID: 23047055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H
    Ding X; Gutierrez L; Croue JP; Li M; Wang L; Wang Y
    Chemosphere; 2020 Aug; 253():126655. PubMed ID: 32302899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.