These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 36905631)

  • 1. Requirements for home-based upper extremity rehabilitation using wearable motion sensors for stroke patients: a user-centred approach.
    Langerak AJ; Regterschot GRH; Selles RW; Meskers CGM; Evers M; Ribbers GM; van Beijnum BJF; Bussmann JBJ
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1392-1404. PubMed ID: 36905631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study.
    Chae SH; Kim Y; Lee KS; Park HS
    JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting.
    Guillén-Climent S; Garzo A; Muñoz-Alcaraz MN; Casado-Adam P; Arcas-Ruiz-Ruano J; Mejías-Ruiz M; Mayordomo-Riera FJ
    J Neuroeng Rehabil; 2021 Feb; 18(1):41. PubMed ID: 33622344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: study protocol of a randomized clinical trial.
    Kairy D; Veras M; Archambault P; Hernandez A; Higgins J; Levin MF; Poissant L; Raz A; Kaizer F
    Contemp Clin Trials; 2016 Mar; 47():49-53. PubMed ID: 26655433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study.
    Lin LF; Lin YJ; Lin ZH; Chuang LY; Hsu WC; Lin YH
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):388-396. PubMed ID: 28627862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of wearable sensors to assess and treat the upper extremity after stroke: a scoping review.
    Kim GJ; Parnandi A; Eva S; Schambra H
    Disabil Rehabil; 2022 Oct; 44(20):6119-6138. PubMed ID: 34328803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke.
    Triandafilou KM; Tsoupikova D; Barry AJ; Thielbar KN; Stoykov N; Kamper DG
    J Neuroeng Rehabil; 2018 Oct; 15(1):88. PubMed ID: 30290777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utility and usability of a wearable system and progressive-challenge cued exercise program for encouraging use of the more involved arm at-home after stroke-a feasibility study with case reports.
    Horder J; Mrotek LA; Casadio M; Bassindale KD; McGuire J; Scheidt RA
    J Neuroeng Rehabil; 2024 Apr; 21(1):66. PubMed ID: 38685012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Upper Extremity Rehabilitation by Combining Telerehabilitation With an Exergame in People With Chronic Stroke: Protocol for a Mixed Methods Study.
    Allegue DR; Kairy D; Higgins J; Archambault P; Michaud F; Miller W; Sweet SN; Tousignant M
    JMIR Res Protoc; 2020 May; 9(5):e14629. PubMed ID: 32097119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis.
    Gauthier LV; Kane C; Borstad A; Strahl N; Uswatte G; Taub E; Morris D; Hall A; Arakelian M; Mark V
    BMC Neurol; 2017 Jun; 17(1):109. PubMed ID: 28595611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Motion Sensor Device to Facilitate Rehabilitation in Patients With Shoulder Adhesive Capsulitis: Pilot Study to Assess Feasibility.
    Chen YP; Lin CY; Tsai MJ; Chuang TY; Lee OK
    J Med Internet Res; 2020 Jul; 22(7):e17032. PubMed ID: 32457026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HoMEcare aRm rehabiLItatioN (MERLIN): telerehabilitation using an unactuated device based on serious games improves the upper limb function in chronic stroke.
    Rozevink SG; van der Sluis CK; Garzo A; Keller T; Hijmans JM
    J Neuroeng Rehabil; 2021 Mar; 18(1):48. PubMed ID: 33726801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives of users for a future interactive wearable system for upper extremity rehabilitation following stroke: a qualitative study.
    Yang CL; Chui R; Mortenson WB; Servati P; Servati A; Tashakori A; Eng JJ
    J Neuroeng Rehabil; 2023 Jun; 20(1):77. PubMed ID: 37312189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic rehabilitation exercise task assessment of stroke patients based on wearable sensors with a lightweight multichannel 1D-CNN model.
    Wang J; Li C; Zhang B; Zhang Y; Shi L; Wang X; Zhou L; Xiong D
    Sci Rep; 2024 Aug; 14(1):19204. PubMed ID: 39160147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of wearable technology to support stroke survivors' motivation for home exercise - Focus group discussions with stroke survivors and physiotherapists.
    Stock R; Gaarden AP; Langørgen E
    Physiother Theory Pract; 2024 Aug; 40(8):1795-1806. PubMed ID: 37246716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized Home Rehabilitation Technology Reduces Upper Extremity Impairment Compared to a Conventional Home Exercise Program: A Randomized, Controlled, Single-Blind Trial in Subacute Stroke.
    Swanson VA; Johnson C; Zondervan DK; Bayus N; McCoy P; Ng YFJ; Schindele Bs J; Reinkensmeyer DJ; Shaw S
    Neurorehabil Neural Repair; 2023 Jan; 37(1):53-65. PubMed ID: 36636751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. User Participatory Design of a Wearable Focal Vibration Device for Home-Based Stroke Rehabilitation.
    Wang H; Ghazi M; Chandrashekhar R; Rippetoe J; Duginski GA; Lepak LV; Milhan LR; James SA
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task selection for a sensor-based, wearable, upper limb training device for stroke survivors: a multi-stage approach.
    Turk R; Whitall J; Meagher C; Stokes M; Roberts S; Woodham S; Clatworthy P; Burridge J
    Disabil Rehabil; 2023 May; 45(9):1480-1487. PubMed ID: 35476616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study.
    Park M; Ko MH; Oh SW; Lee JY; Ham Y; Yi H; Choi Y; Ha D; Shin JH
    J Neuroeng Rehabil; 2019 Oct; 16(1):122. PubMed ID: 31651335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the Home based Virtual Rehabilitation System (HoVRS) to remotely deliver an intense and customized upper extremity training.
    Qiu Q; Cronce A; Patel J; Fluet GG; Mont AJ; Merians AS; Adamovich SV
    J Neuroeng Rehabil; 2020 Nov; 17(1):155. PubMed ID: 33228709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.