These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36905708)

  • 1. Competing mechanisms in fracture of staggered mineralized collagen fibril arrays.
    Xu M; An B; Zhang D
    J Mech Behav Biomed Mater; 2023 May; 141():105761. PubMed ID: 36905708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2018 Jun; 82():18-26. PubMed ID: 29567526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the post-yield behavior of mineralized bone fibril arrays using a 3D non-linear finite element unit-cell model.
    Alizadeh E; Omairey S; Zysset P
    J Mech Behav Biomed Mater; 2023 Mar; 139():105660. PubMed ID: 36638635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of glycosaminoglycans affects the in situ mechanical behavior of extrafibrillar matrix in bone.
    Han Y; Gomez J; Hua R; Xiao P; Gao W; Jiang JX; Wang X
    J Mech Behav Biomed Mater; 2021 Nov; 123():104766. PubMed ID: 34392037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106472. PubMed ID: 38432183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational investigation of the effect of water on the nanomechanical behavior of bone.
    Maghsoudi-Ganjeh M; Wang X; Zeng X
    J Mech Behav Biomed Mater; 2020 Jan; 101():103454. PubMed ID: 31586882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-silico simulation of nanoindentation on bone using a 2D cohesive finite element model.
    Xiao P; Roy A; Wang X
    J Mech Behav Biomed Mater; 2024 Mar; 151():106403. PubMed ID: 38237206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient two-scale 3D FE model of the bone fibril array: comparison of anisotropic elastic properties with analytical methods and micro-sample testing.
    Alizadeh E; Dehestani M; Zysset P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2127-2147. PubMed ID: 32333217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix.
    Schwiedrzik J; Taylor A; Casari D; Wolfram U; Zysset P; Michler J
    Acta Biomater; 2017 Sep; 60():302-314. PubMed ID: 28754646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae.
    Wang Y; Ural A
    J Biomech; 2020 Nov; 112():110041. PubMed ID: 32950759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale.
    Groetsch A; Gourrier A; Schwiedrzik J; Sztucki M; Beck RJ; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2019 Apr; 89():313-329. PubMed ID: 30858052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach.
    Maghsoudi-Ganjeh M; Lin L; Wang X; Zeng X
    Biomech Model Mechanobiol; 2019 Apr; 18(2):463-478. PubMed ID: 30470944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the hierarchical structure of lamellar bone and its impact on fracture behaviour: A computational study using a phase field damage model.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106471. PubMed ID: 38458079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration.
    Casari D; Kochetkova T; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():391-402. PubMed ID: 34175475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils.
    Tavakol M; Vaughan TJ
    J R Soc Interface; 2023 Jan; 20(198):20220803. PubMed ID: 36695019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone.
    Al-Qudsy L; Hu YW; Xu H; Yang PF
    ACS Biomater Sci Eng; 2023 May; 9(5):2203-2219. PubMed ID: 37075172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content.
    Depalle B; Qin Z; Shefelbine SJ; Buehler MJ
    J Bone Miner Res; 2016 Feb; 31(2):380-90. PubMed ID: 26866939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the role of diverse mineralisation paradigms on bone biomechanics - a coarse-grained molecular dynamics investigation.
    Tavakol M; Vaughan TJ
    Nanoscale; 2024 Feb; 16(6):3173-3184. PubMed ID: 38259246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.