These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 36905710)
21. Classification and adulteration detection of vegetable oils based on fatty acid profiles. Zhang L; Li P; Sun X; Wang X; Xu B; Wang X; Ma F; Zhang Q; Ding X J Agric Food Chem; 2014 Aug; 62(34):8745-51. PubMed ID: 25078260 [TBL] [Abstract][Full Text] [Related]
22. Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil. Tan J; Li R; Jiang ZT; Tang SH; Wang Y; Shi M; Xiao YQ; Jia B; Lu TX; Wang H Food Chem; 2017 Feb; 217():274-280. PubMed ID: 27664635 [TBL] [Abstract][Full Text] [Related]
23. Electrospray ionization mass spectrometry and partial least squares discriminant analysis applied to the quality control of olive oil. Alves JO; Botelho BG; Sena MM; Augusti R J Mass Spectrom; 2013 Oct; 48(10):1109-15. PubMed ID: 24130014 [TBL] [Abstract][Full Text] [Related]
24. Accurate quantification of TAGs to identify adulteration of edible oils by ultra-high performance liquid chromatography-quadrupole-time of flight-tandem mass spectrometry. Wei H; Yang D; Mao J; Zhang Q; Cheng L; Yang X; Li P Food Res Int; 2023 Mar; 165():112544. PubMed ID: 36869531 [TBL] [Abstract][Full Text] [Related]
25. Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics. Wang T; Wu HL; Long WJ; Hu Y; Cheng L; Chen AQ; Yu RQ Food Chem; 2019 Sep; 293():348-357. PubMed ID: 31151622 [TBL] [Abstract][Full Text] [Related]
26. Portable near-infrared (NIR) spectrometer and chemometrics for rapid identification of butter cheese adulteration. Medeiros MLDS; Freitas Lima A; Correia Gonçalves M; Teixeira Godoy H; Fernandes Barbin D Food Chem; 2023 Nov; 425():136461. PubMed ID: 37285626 [TBL] [Abstract][Full Text] [Related]
27. Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. Lee JW; Nagai T; Gotoh N; Fukusaki E; Bamba T J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Sep; 966():193-9. PubMed ID: 24553132 [TBL] [Abstract][Full Text] [Related]
28. Triacylglycerols in edible oils: Determination, characterization, quantitation, chemometric approach and evaluation of adulterations. Indelicato S; Bongiorno D; Pitonzo R; Di Stefano V; Calabrese V; Indelicato S; Avellone G J Chromatogr A; 2017 Sep; 1515():1-16. PubMed ID: 28801042 [TBL] [Abstract][Full Text] [Related]
29. Securing food authenticity by translating triacylglycerol profiles of edible oils into a versatile identification method for pumpkin seed oil adulteration. Schwarz AN; Züllig T; Schicher M; Wagner FS; Rechberger GN Food Chem; 2024 Oct; 463(Pt 4):141467. PubMed ID: 39426242 [TBL] [Abstract][Full Text] [Related]
30. Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics. Ye Q; Meng X Food Chem; 2022 Aug; 385():132661. PubMed ID: 35299015 [TBL] [Abstract][Full Text] [Related]
31. Integration of untargeted and pseudotargeted metabolomics reveals specific markers for authentication and adulteration detection of Fritillariae Bulbus using tandem mass spectrometry and chemometrics. Jiang Y; Li X; Zhao WJ; Liu FJ; Yang LL; Li P; Li HJ J Pharm Biomed Anal; 2024 May; 242():116013. PubMed ID: 38341927 [TBL] [Abstract][Full Text] [Related]
32. Exploring the volatile metabolome of conventional and organic walnut oils by solid-phase microextraction and analysis by GC-MS combined with chemometrics. Kalogiouri NP; Manousi N; Rosenberg E; Zachariadis GA; Paraskevopoulou A; Samanidou V Food Chem; 2021 Nov; 363():130331. PubMed ID: 34139518 [TBL] [Abstract][Full Text] [Related]
33. Detection of hazelnut oil in extra-virgin olive oil by analysis of polar components by micro-solid phase extraction based on hydrophilic liquid chromatography and MALDI-ToF mass spectrometry. Calvano CD; Aresta A; Zambonin CG J Mass Spectrom; 2010 Sep; 45(9):981-8. PubMed ID: 20862731 [TBL] [Abstract][Full Text] [Related]
34. Rapid and accurate detection of cinnamon oil adulteration in perilla leaf oil using atmospheric solids analysis probe-mass spectrometry. Wu Y; Huang L; Xu Y; Zhang Y; Nie L; Kang S; Wei F; Ma S Food Chem; 2025 Jan; 462():140965. PubMed ID: 39197242 [TBL] [Abstract][Full Text] [Related]
35. Influence of specific fatty acids on the asymmetric distribution of saturated fatty acids in sunflower (Helianthus annuus L.) triacylglycerols. Martínez-Force E; Ruiz-López N; Garcés R J Agric Food Chem; 2009 Feb; 57(4):1595-9. PubMed ID: 19166295 [TBL] [Abstract][Full Text] [Related]
36. Influence of Roasting on Oil Content, Bioactive Components of Different Walnut Kernel. Ghafoor K; Juhaimi FA; Geçgel Ü; Babiker EE; Özcan MM J Oleo Sci; 2020; 69(5):423-428. PubMed ID: 32378548 [TBL] [Abstract][Full Text] [Related]
37. Sequential (step-by-step) detection, identification and quantitation of extra virgin olive oil adulteration by chemometric treatment of chromatographic profiles. Capote FP; Jiménez JR; de Castro MD Anal Bioanal Chem; 2007 Aug; 388(8):1859-65. PubMed ID: 17611742 [TBL] [Abstract][Full Text] [Related]
38. Identification of camellia oil using FT-IR spectroscopy and chemometrics based on both isolated unsaponifiables and vegetable oils. He W; Lei T Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117839. PubMed ID: 31812560 [TBL] [Abstract][Full Text] [Related]
39. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils. Jiménez-Sotelo P; Hernández-Martínez M; Osorio-Revilla G; Meza-Márquez OG; García-Ochoa F; Gallardo-Velázquez T Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1105-15. PubMed ID: 27314226 [TBL] [Abstract][Full Text] [Related]
40. Quantitative analysis of blended oils by matrix-assisted laser desorption/ionization mass spectrometry and partial least squares regression. Li S; Ng TT; Yao ZP Food Chem; 2021 Jan; 334():127601. PubMed ID: 32712491 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]