These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36905722)

  • 1. Ecophysiological response of marine copepods to dietary elemental imbalances.
    Saiz E; Griffell K; Isari S; Calbet A
    Mar Environ Res; 2023 Apr; 186():105940. PubMed ID: 36905722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copepod foraging on the basis of food nutritional quality: can copepods really choose?
    Isari S; Antό M; Saiz E
    PLoS One; 2013; 8(12):e84742. PubMed ID: 24386411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of prey trophic mode on the gross-growth efficiency of marine copepods: the case of mixoplankton.
    Traboni C; Calbet A; Saiz E
    Sci Rep; 2020 Jul; 10(1):12259. PubMed ID: 32704097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction.
    Meyers MT; Cochlan WP; Carpenter EJ; Kimmerer WJ
    PLoS One; 2019; 14(5):e0217047. PubMed ID: 31107897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fitness consequences for copepods feeding on a red tide dinoflagellate: deciphering the effects of nutritional value, toxicity, and feeding behavior.
    Prince EK; Lettieri L; McCurdy KJ; Kubanek J
    Oecologia; 2006 Mar; 147(3):479-88. PubMed ID: 16261377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoplankton food quality determines time windows for successful zooplankton reproductive pulses.
    Vargas CA; Escribano R; Poulet S
    Ecology; 2006 Dec; 87(12):2992-9. PubMed ID: 17249223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers.
    Malzahn AM; Hantzsche F; Schoo KL; Boersma M; Aberle N
    Oecologia; 2010 Jan; 162(1):35-48. PubMed ID: 19784675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: Functional response, prey size spectrum, and effects of the presence of alternative prey.
    Helenius LK; Saiz E
    PLoS One; 2017; 12(3):e0172902. PubMed ID: 28257517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant liposomes as delivery system for ecophysiological studies in copepods.
    Buttino I; De Rosa G; Carotenuto Y; Ianora A; Fontana A; Quaglia F; La Rotonda MI; Miralto A
    J Exp Biol; 2006 Mar; 209(Pt 5):801-9. PubMed ID: 16481569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea.
    Hogfors H; Motwani NH; Hajdu S; El-Shehawy R; Holmborn T; Vehmaa A; Engström-Öst J; Brutemark A; Gorokhova E
    PLoS One; 2014; 9(11):e112692. PubMed ID: 25409500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Egg production, egg hatching success, and population growth of the calanoid copepod Acartia grani (Calanoida, acartiidae) fed with eight different diets.
    Sumares B; Nogueira N
    Commun Agric Appl Biol Sci; 2013; 78(4):441-4. PubMed ID: 25141736
    [No Abstract]   [Full Text] [Related]  

  • 13. Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis.
    Motwani NH; Gorokhova E
    PLoS One; 2013; 8(11):e79230. PubMed ID: 24260175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton.
    Plum C; Hüsener M; Hillebrand H
    Ecology; 2015 Nov; 96(11):3075-89. PubMed ID: 27070025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do inactivated microbial preparations improve life history traits of the copepod Acartia tonsa?
    Drillet G; Rabarimanantsoa T; Frouël S; Lamson JS; Christensen AM; Kim-Tiam S; Hansen BW
    Mar Biotechnol (NY); 2011 Oct; 13(5):831-6. PubMed ID: 21213117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of food stoichiometry and temperature on copepods are mediated by ontogeny.
    Mathews L; Faithfull CL; Lenz PH; Nelson CE
    Oecologia; 2018 Sep; 188(1):75-84. PubMed ID: 29948318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it's hot?
    Boersma M; Mathew KA; Niehoff B; Schoo KL; Franco-Santos RM; Meunier CL
    Ecol Lett; 2016 Jan; 19(1):45-53. PubMed ID: 26567776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction in thermal stress of marine copepods after physiological acclimation.
    Saiz E; Griffell K; Olivares M; Solé M; Theodorou I; Calbet A
    J Plankton Res; 2022; 44(3):427-442. PubMed ID: 35664084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes.
    Vehmaa A; Brutemark A; Engström-Öst J
    PLoS One; 2012; 7(10):e48538. PubMed ID: 23119052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutritional status and diet composition affect the value of diatoms as copepod prey.
    Jones RH; Flynn KJ
    Science; 2005 Mar; 307(5714):1457-9. PubMed ID: 15746424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.