These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36905840)
1. Characterization of retinal chromophore and protonated Schiff base in Thermoplasmatales archaeon heliorhodopsin using solid-state NMR spectroscopy. Suzuki S; Kumagai S; Nagashima T; Yamazaki T; Okitsu T; Wada A; Naito A; Katayama K; Inoue K; Kandori H; Kawamura I Biophys Chem; 2023 May; 296():106991. PubMed ID: 36905840 [TBL] [Abstract][Full Text] [Related]
2. Solid-state NMR for the characterization of retinal chromophore and Schiff base in TAT rhodopsin embedded in membranes under weakly acidic conditions. Arikawa S; Sugimoto T; Okitsu T; Wada A; Katayama K; Kandori H; Kawamura I Biophys Physicobiol; 2023 Mar; 20(Supplemental):e201017. PubMed ID: 38362323 [TBL] [Abstract][Full Text] [Related]
3. Internal Proton Transfer in the Activation of Heliorhodopsin. Singh M; Hashimoto M; Katayama K; Furutani Y; Kandori H J Mol Biol; 2024 Mar; 436(5):168273. PubMed ID: 37709010 [TBL] [Abstract][Full Text] [Related]
4. Solid-State Nuclear Magnetic Resonance Structural Study of the Retinal-Binding Pocket in Sodium Ion Pump Rhodopsin. Shigeta A; Ito S; Inoue K; Okitsu T; Wada A; Kandori H; Kawamura I Biochemistry; 2017 Jan; 56(4):543-550. PubMed ID: 28040890 [TBL] [Abstract][Full Text] [Related]
5. Microsolvation Effects in the Spectral Tuning of Heliorhodopsin. Wijesiri K; Gascón JA J Phys Chem B; 2022 Aug; 126(31):5803-5809. PubMed ID: 35894868 [TBL] [Abstract][Full Text] [Related]
6. 6-s-cis Conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin. Ahuja S; Eilers M; Hirshfeld A; Yan EC; Ziliox M; Sakmar TP; Sheves M; Smith SO J Am Chem Soc; 2009 Oct; 131(42):15160-9. PubMed ID: 19795853 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for unique color tuning mechanism in heliorhodopsin. Tanaka T; Singh M; Shihoya W; Yamashita K; Kandori H; Nureki O Biochem Biophys Res Commun; 2020 Dec; 533(3):262-267. PubMed ID: 32951839 [TBL] [Abstract][Full Text] [Related]
9. Light-Induced Conformational Alterations in Heliorhodopsin Triggered by the Retinal Excited State. Das I; Pushkarev A; Sheves M J Phys Chem B; 2021 Aug; 125(31):8797-8804. PubMed ID: 34342994 [TBL] [Abstract][Full Text] [Related]
10. Localization of the retinal protonated Schiff base counterion in rhodopsin. Han M; DeDecker BS; Smith SO Biophys J; 1993 Aug; 65(2):899-906. PubMed ID: 8105993 [TBL] [Abstract][Full Text] [Related]
11. Zinc Binding to Heliorhodopsin. Hashimoto M; Katayama K; Furutani Y; Kandori H J Phys Chem Lett; 2020 Oct; 11(20):8604-8609. PubMed ID: 32940480 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of Schiff base and chromophore in green proteorhodopsin by solid-state NMR. Pfleger N; Lorch M; Woerner AC; Shastri S; Glaubitz C J Biomol NMR; 2008 Jan; 40(1):15-21. PubMed ID: 17968661 [TBL] [Abstract][Full Text] [Related]
14. Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway. Besaw JE; Reichenwallner J; De Guzman P; Tucs A; Kuo A; Morizumi T; Tsuda K; Sljoka A; Miller RJD; Ernst OP Sci Rep; 2022 Aug; 12(1):13955. PubMed ID: 35977989 [TBL] [Abstract][Full Text] [Related]
15. Resonance Raman Determination of Chromophore Structures of Heliorhodopsin Photointermediates. Urui T; Mizuno M; Otomo A; Kandori H; Mizutani Y J Phys Chem B; 2021 Jul; 125(26):7155-7162. PubMed ID: 34167296 [TBL] [Abstract][Full Text] [Related]
16. Photoisomerization pathway of the microbial rhodopsin chromophore in solution. Sugiura M; Kandori H Photochem Photobiol Sci; 2024 Aug; 23(8):1435-1443. PubMed ID: 38886314 [TBL] [Abstract][Full Text] [Related]
17. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12. Tomida S; Kitagawa S; Kandori H; Furutani Y J Phys Chem B; 2021 Aug; 125(30):8331-8341. PubMed ID: 34292728 [TBL] [Abstract][Full Text] [Related]
18. Resonance Raman Investigation of the Chromophore Structure of Heliorhodopsins. Otomo A; Mizuno M; Singh M; Shihoya W; Inoue K; Nureki O; Béjà O; Kandori H; Mizutani Y J Phys Chem Lett; 2018 Nov; 9(22):6431-6436. PubMed ID: 30351947 [TBL] [Abstract][Full Text] [Related]
19. Strongly Hydrogen-Bonded Schiff Base and Adjoining Polyene Twisting in the Retinal Chromophore of Schizorhodopsins. Shionoya T; Singh M; Mizuno M; Kandori H; Mizutani Y Biochemistry; 2021 Oct; 60(41):3050-3057. PubMed ID: 34601881 [TBL] [Abstract][Full Text] [Related]
20. Structure of a retinal chromophore of dark-adapted middle rhodopsin as studied by solid-state nuclear magnetic resonance spectroscopy. Kawamura I; Seki H; Tajima S; Makino Y; Shigeta A; Okitsu T; Wada A; Naito A; Sudo Y Biophys Physicobiol; 2021; 18():177-185. PubMed ID: 34434690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]