These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36906603)

  • 1. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve.
    Charytonowicz D; Brody R; Sebra R
    Nat Commun; 2023 Mar; 14(1):1350. PubMed ID: 36906603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.
    Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks.
    Li Y; Luo Y
    Genome Biol; 2024 Aug; 25(1):206. PubMed ID: 39103939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data.
    Liu Y; Li N; Qi J; Xu G; Zhao J; Wang N; Huang X; Jiang W; Wei H; Justet A; Adams TS; Homer R; Amei A; Rosas IO; Kaminski N; Wang Z; Yan X
    Genome Biol; 2024 Oct; 25(1):271. PubMed ID: 39402626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scDeconv: an R package to deconvolve bulk DNA methylation data with scRNA-seq data and paired bulk RNA-DNA methylation data.
    Liu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35453146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD).
    Chiu YJ; Ni CE; Huang YH
    BMC Med Genomics; 2023 Oct; 16(Suppl 2):272. PubMed ID: 37907883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NNICE: a deep quantile neural network algorithm for expression deconvolution.
    Jin YW; Hu P; Liu Q
    Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XgCPred: Cell type classification using XGBoost-CNN integration and exploiting gene expression imaging in single-cell RNAseq data.
    Abu-Doleh A; Al Fahoum A
    Comput Biol Med; 2024 Oct; 181():109066. PubMed ID: 39180857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces.
    Ding J; Regev A
    Nat Commun; 2021 May; 12(1):2554. PubMed ID: 33953202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics.
    Li C; Chan TF; Yang C; Lin Z
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37862237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving bulk RNA-seq classification by transferring gene signature from single cells in acute myeloid leukemia.
    Wang R; Zheng X; Wang J; Wan S; Song F; Wong MH; Leung KS; Cheng L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing transcriptomic heterogeneity of single-cell RNASeq data by bulk-level gene expression data.
    Tiong KL; Luzhbin D; Yeang CH
    BMC Bioinformatics; 2024 Jun; 25(1):209. PubMed ID: 38867193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.
    Ding J; Li L; Lu Q; Venegas J; Wang Y; Wu L; Jin W; Wen H; Liu R; Tang W; Dai X; Li Z; Zuo W; Chang Y; Lei YL; Shang L; Danaher P; Xie Y; Tang J
    J Comput Biol; 2024 Sep; 31(9):871-885. PubMed ID: 39117342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.
    Wang C; Lin Y; Li S; Guan J
    BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets.
    Maden SK; Kwon SH; Huuki-Myers LA; Collado-Torres L; Hicks SC; Maynard KR
    Genome Biol; 2023 Dec; 24(1):288. PubMed ID: 38098055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single-cell and spatial RNA-seq database for Alzheimer's disease (ssREAD).
    Wang C; Acosta D; McNutt M; Bian J; Ma A; Fu H; Ma Q
    Nat Commun; 2024 Jun; 15(1):4710. PubMed ID: 38844475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement.
    Guo Q; Yuan M; Zhang L; Deng M
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of immune cell content in tumor using single-cell RNA-seq reference data.
    Yu X; Chen YA; Conejo-Garcia JR; Chung CH; Wang X
    BMC Cancer; 2019 Jul; 19(1):715. PubMed ID: 31324168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.