These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 36906658)
21. How accurately can one predict drug binding modes using AlphaFold models? Karelina M; Noh JJ; Dror RO Elife; 2023 Dec; 12():. PubMed ID: 38131311 [TBL] [Abstract][Full Text] [Related]
22. Sampling alternative conformational states of transporters and receptors with AlphaFold2. Del Alamo D; Sala D; Mchaourab HS; Meiler J Elife; 2022 Mar; 11():. PubMed ID: 35238773 [TBL] [Abstract][Full Text] [Related]
23. Biodegradation of PFOA in microbial electrolysis cells by Acidimicrobiaceae sp. strain A6. Ruiz-Urigüen M; Shuai W; Huang S; Jaffé PR Chemosphere; 2022 Apr; 292():133506. PubMed ID: 34995627 [TBL] [Abstract][Full Text] [Related]
24. AI-based AlphaFold2 significantly expands the structural space of the autophagy pathway. Malhotra N; Khatri S; Kumar A; Arun A; Daripa P; Fatihi S; Venkadesan S; Jain N; Thukral L Autophagy; 2023 Dec; 19(12):3201-3220. PubMed ID: 37516933 [TBL] [Abstract][Full Text] [Related]
25. Modeling Flexible Protein Structure With AlphaFold2 and Crosslinking Mass Spectrometry. Manalastas-Cantos K; Adoni KR; Pfeifer M; Märtens B; Grünewald K; Thalassinos K; Topf M Mol Cell Proteomics; 2024 Mar; 23(3):100724. PubMed ID: 38266916 [TBL] [Abstract][Full Text] [Related]
26. Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Maillard J; Schumacher W; Vazquez F; Regeard C; Hagen WR; Holliger C Appl Environ Microbiol; 2003 Aug; 69(8):4628-38. PubMed ID: 12902251 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of AlphaFold2 Structures for Hit Identification across Multiple Scenarios. Gu S; Yang Y; Zhao Y; Qiu J; Wang X; Tong HHY; Liu L; Wan X; Liu H; Hou T; Kang Y J Chem Inf Model; 2024 May; 64(9):3630-3639. PubMed ID: 38630855 [TBL] [Abstract][Full Text] [Related]
28. The vitamin D receptor as a potential target for the toxic effects of per- and polyfluoroalkyl substances (PFASs): An in-silico study. Azhagiya Singam ER; Durkin KA; La Merrill MA; Furlow JD; Wang JC; Smith MT Environ Res; 2023 Jan; 217():114832. PubMed ID: 36403651 [TBL] [Abstract][Full Text] [Related]
29. AlphaFold2-multimer guided high-accuracy prediction of typical and atypical ATG8-binding motifs. Ibrahim T; Khandare V; Mirkin FG; Tumtas Y; Bubeck D; Bozkurt TO PLoS Biol; 2023 Feb; 21(2):e3001962. PubMed ID: 36753519 [TBL] [Abstract][Full Text] [Related]
30. AlphaFold2 modeling and molecular dynamics simulations of an intrinsically disordered protein. Guo HB; Huntington B; Perminov A; Smith K; Hastings N; Dennis P; Kelley-Loughnane N; Berry R PLoS One; 2024; 19(5):e0301866. PubMed ID: 38739602 [TBL] [Abstract][Full Text] [Related]
31. Facilitated transfer of IscU-[2Fe2S] clusters by chaperone-mediated ligand exchange. Bonomi F; Iametti S; Morleo A; Ta D; Vickery LE Biochemistry; 2011 Nov; 50(44):9641-50. PubMed ID: 21977977 [TBL] [Abstract][Full Text] [Related]
32. Interpretable Atomistic Prediction and Functional Analysis of Conformational Ensembles and Allosteric States in Protein Kinases Using AlphaFold2 Adaptation with Randomized Sequence Scanning and Local Frustration Profiling. Raisinghani N; Alshahrani M; Gupta G; Tian H; Xiao S; Tao P; Verkhivker G bioRxiv; 2024 Feb; ():. PubMed ID: 38496487 [TBL] [Abstract][Full Text] [Related]
33. How AlphaFold2 shaped the structural coverage of the human transmembrane proteome. Jambrich MA; Tusnady GE; Dobson L Sci Rep; 2023 Nov; 13(1):20283. PubMed ID: 37985809 [TBL] [Abstract][Full Text] [Related]
34. The Origin of Discrepancies between Predictions and Annotations in Intrinsically Disordered Proteins. Pajkos M; Erdős G; Dosztányi Z Biomolecules; 2023 Sep; 13(10):. PubMed ID: 37892124 [TBL] [Abstract][Full Text] [Related]
35. Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review. Cui J; Gao P; Deng Y Environ Sci Technol; 2020 Apr; 54(7):3752-3766. PubMed ID: 32162904 [TBL] [Abstract][Full Text] [Related]
37. Reductive Defluorination and Mechanochemical Decomposition of Per- and Polyfluoroalkyl Substances (PFASs): From Present Knowledge to Future Remediation Concepts. Roesch P; Vogel C; Simon FG Int J Environ Res Public Health; 2020 Oct; 17(19):. PubMed ID: 33023008 [TBL] [Abstract][Full Text] [Related]
38. Anaerobic degradation of perfluorooctanoic acid (PFOA) in biosolids by Acidimicrobium sp. strain A6. Huang S; Sima M; Long Y; Messenger C; Jaffé PR J Hazard Mater; 2022 Feb; 424(Pt D):127699. PubMed ID: 34799154 [TBL] [Abstract][Full Text] [Related]
39. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to the PPARγ/RXRα-DNA Complex. Almeida NMS; Bali SK; James D; Wang C; Wilson AK J Chem Inf Model; 2023 Dec; 63(23):7423-7443. PubMed ID: 37990410 [TBL] [Abstract][Full Text] [Related]
40. Impact of supporting electrolyte on electrochemical performance of borophene-functionalized graphene sponge anode and degradation of per- and polyfluoroalkyl substances (PFAS). Duinslaeger N; Doni A; Radjenovic J Water Res; 2023 Aug; 242():120232. PubMed ID: 37352674 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]