BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36906712)

  • 21. HC-HDSD: A method of hypergraph construction and high-density subgraph detection for inferring high-order epistatic interactions.
    Ding Q; Shang J; Sun Y; Wang X; Liu JX
    Comput Biol Chem; 2019 Feb; 78():440-447. PubMed ID: 30595466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model for predicting drug-disease associations based on dense convolutional attention network.
    Wang H; Zhao S; Zhao J; Feng Z
    Math Biosci Eng; 2021 Aug; 18(6):7419-7439. PubMed ID: 34814256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IHGC-GAN: influence hypergraph convolutional generative adversarial network for risk prediction of late mild cognitive impairment based on imaging genetic data.
    Bi XA; Li L; Wang Z; Wang Y; Luo X; Xu L
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35348583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks.
    Bamunu Mudiyanselage T; Lei X; Senanayake N; Zhang Y; Pan Y
    Methods; 2022 Feb; 198():32-44. PubMed ID: 34748953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Index-based Subgraph Matching Algorithm with General Symmetries (ISMAGS): exploiting symmetry for faster subgraph enumeration.
    Houbraken M; Demeyer S; Michoel T; Audenaert P; Colle D; Pickavet M
    PLoS One; 2014; 9(5):e97896. PubMed ID: 24879305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling.
    Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PDA-PRGCN: identification of Piwi-interacting RNA-disease associations through subgraph projection and residual scaling-based feature augmentation.
    Zhang P; Sun W; Wei D; Li G; Xu J; You Z; Zhao B; Li L
    BMC Bioinformatics; 2023 Jan; 24(1):18. PubMed ID: 36650439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of human microRNA-disease association via hypergraph embedded bipartite local model.
    Ding Y; Jiang L; Tang J; Guo F
    Comput Biol Chem; 2020 Dec; 89():107369. PubMed ID: 33099120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SGNNMD: signed graph neural network for predicting deregulation types of miRNA-disease associations.
    Zhang G; Li M; Deng H; Xu X; Liu X; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34875683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A granularity-level information fusion strategy on hypergraph transformer for predicting synergistic effects of anticancer drugs.
    Wang W; Yuan G; Wan S; Zheng Z; Liu D; Zhang H; Li J; Zhou Y; Wang X
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38243692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes.
    Hua M; Yu S; Liu T; Yang X; Wang H
    Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RWHMDA: Random Walk on Hypergraph for Microbe-Disease Association Prediction.
    Niu YW; Qu CQ; Wang GH; Yan GY
    Front Microbiol; 2019; 10():1578. PubMed ID: 31354672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Novel Computational Model for Predicting microRNA-Disease Associations Based on Heterogeneous Graph Convolutional Networks.
    Li C; Liu H; Hu Q; Que J; Yao J
    Cells; 2019 Aug; 8(9):. PubMed ID: 31455028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GACNNMDA: a computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier.
    Ma Q; Tan Y; Wang L
    BMC Bioinformatics; 2023 Feb; 24(1):35. PubMed ID: 36732704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning from low-rank multimodal representations for predicting disease-drug associations.
    Hu P; Huang YA; Mei J; Leung H; Chen ZH; Kuang ZM; You ZH; Hu L
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 1):308. PubMed ID: 34736437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. T-HyperGNNs: Hypergraph Neural Networks via Tensor Representations.
    Wang F; Pena-Pena K; Qian W; Arce GR
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; PP():. PubMed ID: 38451750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Hypergraph Learning-Based Brain Functional Connectivity Analysis in fMRI Data.
    Xiao L; Wang J; Kassani PH; Zhang Y; Bai Y; Stephen JM; Wilson TW; Calhoun VD; Wang YP
    IEEE Trans Med Imaging; 2020 May; 39(5):1746-1758. PubMed ID: 31796393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tackling higher-order relations and heterogeneity: Dynamic heterogeneous hypergraph network for spatiotemporal activity prediction.
    Tian C; Zhang Z; Yao F; Guo Z; Yan S; Sun X
    Neural Netw; 2023 Sep; 166():70-84. PubMed ID: 37480770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.