These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36907012)

  • 21. Local and systemic hormonal responses in pepper (Capsicum annuum L.) leaves under green peach aphid (Myzus persicae Sulzer) infestation.
    Florencio-Ortiz V; Novák O; Casas JL
    J Plant Physiol; 2018 Dec; 231():356-363. PubMed ID: 30388675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vitamin C and the abscisic acid-insensitive 4 transcription factor are important determinants of aphid resistance in Arabidopsis.
    Kerchev PI; Karpińska B; Morris JA; Hussain A; Verrall SR; Hedley PE; Fenton B; Foyer CH; Hancock RD
    Antioxid Redox Signal; 2013 Jun; 18(16):2091-105. PubMed ID: 23343093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A galling insect activates plant reproductive programs during gall development.
    Schultz JC; Edger PP; Body MJA; Appel HM
    Sci Rep; 2019 Feb; 9(1):1833. PubMed ID: 30755671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A genetic basis for the manipulation of sink-source relationships by the galling aphid Pemphigus batae.
    Compson ZG; Larson KC; Zinkgraf MS; Whitham TG
    Oecologia; 2011 Nov; 167(3):711-21. PubMed ID: 21667296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome profile of cup-shaped galls in Litsea acuminata leaves.
    Shih TH; Lin SH; Huang MY; Sun CW; Yang CM
    PLoS One; 2018; 13(10):e0205265. PubMed ID: 30356295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions.
    Larson KC; Whitham TG
    Oecologia; 1991 Sep; 88(1):15-21. PubMed ID: 28312726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Progress Regarding the Molecular Aspects of Insect Gall Formation.
    Takeda S; Hirano T; Ohshima I; Sato MH
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endogenous hormones response to cytokinins with regard to organogenesis in explants of peach (Prunus persica L. Batsch) cultivars and rootstocks (P. persica × Prunus dulcis).
    Pérez-Jiménez M; Cantero-Navarro E; Pérez-Alfocea F; Cos-Terrer J
    Plant Physiol Biochem; 2014 Nov; 84():197-202. PubMed ID: 25289519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chestnut species and jasmonic acid treatment influence development and community interactions of galls produced by the Asian chestnut gall wasp, Dryocosmus kuriphilus.
    Cooper WR; Rieske LK
    J Insect Sci; 2011; 11():140. PubMed ID: 22233098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ab-GALFA, A bioassay for insect gall formation using the model plant Arabidopsis thaliana.
    Hirano T; Okamoto A; Oda Y; Sakamoto T; Takeda S; Matsuura T; Ikeda Y; Higaki T; Kimura S; Sato MH
    Sci Rep; 2023 Feb; 13(1):2554. PubMed ID: 36781988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia.
    Inbar M; Wink M; Wool D
    Mol Phylogenet Evol; 2004 Aug; 32(2):504-11. PubMed ID: 15223033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revealing Differential Expression of Phytohormones in Sorghum in Response to Aphid Attack Using the Metabolomics Approach.
    Huang J; Shrestha K; Huang Y
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hormaphis hamamelidis fundatrices benefit by manipulating phenolic metabolism of their host.
    Rehill BJ; Schultz JC
    J Chem Ecol; 2012 May; 38(5):496-8. PubMed ID: 22532245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteome changes in pepper (Capsicum annuum L.) leaves induced by the green peach aphid (Myzus persicae Sulzer).
    Florencio-Ortiz V; Sellés-Marchart S; Casas JL
    BMC Plant Biol; 2021 Jan; 21(1):12. PubMed ID: 33407137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytohormones and willow gall induction by a gall-inducing sawfly.
    Yamaguchi H; Tanaka H; Hasegawa M; Tokuda M; Asami T; Suzuki Y
    New Phytol; 2012 Oct; 196(2):586-595. PubMed ID: 22913630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional up-regulation of host-specific terpene metabolism in aphid-induced galls of Pistacia palaestina.
    Davidovich-Rikanati R; Bar E; Hivert G; Huang XQ; Hoppen-Tonial C; Khankin V; Rand K; Abofreih A; Muhlemann JK; Marchese JA; Shotland Y; Dudareva N; Inbar M; Lewinsohn E
    J Exp Bot; 2022 Jan; 73(2):555-570. PubMed ID: 34129033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated Transcriptome and Metabolome Dynamic Analysis of Galls Induced by the Gall Mite
    Yang M; Li H; Qiao H; Guo K; Xu R; Wei H; Wei J; Liu S; Xu C
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The evolution of inquilinism, host-plant use and mitochondrial substitution rates in Tamalia gall aphids.
    Miller DG; Crespi B
    J Evol Biol; 2003 Jul; 16(4):731-43. PubMed ID: 14632236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gall volatiles defend aphids against a browsing mammal.
    Rostás M; Maag D; Ikegami M; Inbar M
    BMC Evol Biol; 2013 Sep; 13():193. PubMed ID: 24020365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanisms of tannin accumulation in Rhus galls and genes involved in plant-insect interactions.
    Chen H; Liu J; Cui K; Lu Q; Wang C; Wu H; Yang Z; Ding W; Shao S; Wang H; Ling X; King-Jones K; Chen X
    Sci Rep; 2018 Jun; 8(1):9841. PubMed ID: 29959354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.