These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces. Lee E; Müller-Plathe F J Chem Phys; 2022 Jul; 157(2):024701. PubMed ID: 35840373 [TBL] [Abstract][Full Text] [Related]
6. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces. Beitollahpoor M; Farzam M; Pesika NS J Colloid Interface Sci; 2023 Oct; 648():161-168. PubMed ID: 37301141 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of Droplets Impacting on Aerogel, Liquid Infused, and Liquid-Like Solid Surfaces. Dawson J; Coaster S; Han R; Gausden J; Liu H; McHale G; Chen J ACS Appl Mater Interfaces; 2023 Jan; 15(1):2301-2312. PubMed ID: 36580541 [TBL] [Abstract][Full Text] [Related]
8. How droplets move on laser-structured surfaces: Determination of droplet adhesion forces on nano- and microstructured surfaces. Schnell G; Polley C; Thomas R; Bartling S; Wagner J; Springer A; Seitz H J Colloid Interface Sci; 2023 Jan; 630(Pt A):951-964. PubMed ID: 36327711 [TBL] [Abstract][Full Text] [Related]
9. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces. Zhao L; Cheng J Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459 [TBL] [Abstract][Full Text] [Related]
11. Liquid microdroplet sliding on hydrophobic surfaces in the presence of an electric field. Wang Y; Bhushan B Langmuir; 2010 Mar; 26(6):4013-7. PubMed ID: 20214393 [TBL] [Abstract][Full Text] [Related]
12. Vibration sorting of small droplets on hydrophilic surface by asymmetric contact-line friction. Lee Y; Amberg G; Shiomi J PNAS Nexus; 2022 May; 1(2):pgac027. PubMed ID: 36713314 [TBL] [Abstract][Full Text] [Related]
13. Probing the physical origins of droplet friction using a critically damped cantilever. Arunachalam S; Lin M; Daniel D Soft Matter; 2024 Oct; 20(38):7583-7591. PubMed ID: 39248408 [TBL] [Abstract][Full Text] [Related]
14. Novel friction law for the static friction force based on local precursor slipping. Katano Y; Nakano K; Otsuki M; Matsukawa H Sci Rep; 2014 Sep; 4():6324. PubMed ID: 25205283 [TBL] [Abstract][Full Text] [Related]
15. Water thermophoresis in carbon nanotubes: the interplay between thermophoretic and friction forces. Oyarzua E; Walther JH; Zambrano HA Phys Chem Chem Phys; 2018 Jan; 20(5):3672-3677. PubMed ID: 29344599 [TBL] [Abstract][Full Text] [Related]
16. Anisotropic Wettability of Bioinspired Surface Characterized by Friction Force. Zhang J; Li L; Xu P; Lei Y; Song Q; Liu J; Xiong Y; Yang S; Zhang Y; Xue L Biomimetics (Basel); 2022 Aug; 7(3):. PubMed ID: 35997428 [TBL] [Abstract][Full Text] [Related]
17. Dynamic wetting and spreading and the role of topography. McHale G; Newton MI; Shirtcliffe NJ J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886 [TBL] [Abstract][Full Text] [Related]
19. Velocity-Dependent Contact Angle and Energy Dissipations of Dynamic Wetting Nanodroplets on Nanopillared Surfaces. Xie C; Shi J; Luo Y; Chu G; Li H Langmuir; 2022 Aug; 38(32):9822-9832. PubMed ID: 35921226 [TBL] [Abstract][Full Text] [Related]
20. Mapping micrometer-scale wetting properties of superhydrophobic surfaces. Daniel D; Lay CL; Sng A; Jun Lee CJ; Jin Neo DC; Ling XY; Tomczak N Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25008-25012. PubMed ID: 31772014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]