These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3690722)

  • 1. Identification of a reactive intermediate of furazolidone formed by swine liver microsomes.
    Vroomen LH; Groten JP; van Muiswinkel K; van Velduizen A; van Bladeren PJ
    Chem Biol Interact; 1987; 64(1-2):167-79. PubMed ID: 3690722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible interaction of a reactive intermediate derived from furazolidone with glutathione and protein.
    Vroomen LH; Berghmans MC; Groten JP; Koeman JH; van Bladeren PJ
    Toxicol Appl Pharmacol; 1988 Aug; 95(1):53-60. PubMed ID: 3413795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative studies of the metabolism of furazolidone by rat liver microsomes.
    Vroomen LH; van Ommen B; van Bladeren PJ
    Toxicol In Vitro; 1987; 1(2):97-104. PubMed ID: 20647073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The elimination of furazolidone and its open-chain cyano-derivative from adult swine.
    Vroomen LH; Berghmans MC; Hekman P; Hoogenboom LA; Kuiper HA
    Xenobiotica; 1987 Dec; 17(12):1427-35. PubMed ID: 3326298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism in vivo of furazolidone: evidence for formation of an open-chain carboxylic acid and alpha-ketoglutaric acid from the nitrofuran in rats.
    Tatsumi K; Nakabeppu H; Takahashi Y; Kitamura S
    Arch Biochem Biophys; 1984 Oct; 234(1):112-6. PubMed ID: 6486813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive metabolism of furazolidone by Escherichia coli and rat liver in vitro.
    Abraham RT; Knapp JE; Minnigh MB; Wong LK; Zemaitis MA; Alvin JD
    Drug Metab Dispos; 1984; 12(6):732-41. PubMed ID: 6150823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the carcinogenic effects of furazolidone and its metabolites in two fish species.
    Auro A; Sumano H; Ocampo L; Barragán A
    Pharmacogenomics J; 2004; 4(1):24-8. PubMed ID: 14647403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of pig hepatocytes to study the nature of protein-bound metabolites of furazolidone: a new analytical method for their detection.
    Hoogenboom LA; van Kammen M; Berghmans MC; Koeman JH; Kuiper HA
    Food Chem Toxicol; 1991 May; 29(5):321-8. PubMed ID: 2060890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate and microbiological effects of furazolidone in a marine aquaculture sediment.
    Samuelsen OB; Solheim E; Lunestad BT
    Sci Total Environ; 1991 Oct; 108(3):275-83. PubMed ID: 1754880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disposition of 3-(4-cyano-2-oxobutylidene amino)-2-oxazolidone, a cyano-metabolite of furazolidone, in furazolidone-treated grouper.
    Guo JJ; Chou HN; Chiu Liao I
    Food Addit Contam; 2003 Mar; 20(3):229-36. PubMed ID: 12623646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent binding of phenytoin to protein and modulation of phenytoin metabolism by thiols in A/J mouse liver microsomes.
    Roy D; Snodgrass WR
    J Pharmacol Exp Ther; 1990 Mar; 252(3):895-900. PubMed ID: 2319474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-[5-nitro-2-furfurylidene]-3-amino-2-oxazolidinone activation by the human intestinal cell line Caco-2 monitored through noninvasive electron spin resonance spectroscopy.
    Rossi L; De Angelis I; Pedersen JZ; Marchese E; Stammati A; Rotilio G; Zucco F
    Mol Pharmacol; 1996 Mar; 49(3):547-55. PubMed ID: 8643095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The residue behavior of the furazolidone metabolite 3-(4-cyano-2-oxobutylideneamino)-2-oxazolidone in trout].
    Wölwer-Rieck U; Büning-Pfaue H
    Z Lebensm Unters Forsch; 1990; 191(4-5):319-21. PubMed ID: 2293521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of the formation of cytotoxic, genotoxic, protein-reactive and stable metabolites from naphthalene by human liver microsomes.
    Tingle MD; Pirmohamed M; Templeton E; Wilson AS; Madden S; Kitteringham NR; Park BK
    Biochem Pharmacol; 1993 Nov; 46(9):1529-38. PubMed ID: 8240407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the role of glutathione in the biotransformation and toxicity of furazolidone using pig hepatocytes.
    Hoogenboom LA; van Kammen M; Huveneers-Oorsprong MB; Kuiper HA
    Toxicol In Vitro; 1992 May; 6(3):227-37. PubMed ID: 20732118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of furaltadone by pig hepatocytes and Salmonella typhimurium TA 100 bacteria, and the formation of protein-bound metabolites.
    Hoogenboom LA; Polman TH; Lommen A; Huveneers MB; van Rhijn J
    Xenobiotica; 1994 Aug; 24(8):713-27. PubMed ID: 7839695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiophene sulfoxides as reactive metabolites: formation upon microsomal oxidation of a 3-aroylthiophene and fate in the presence of nucleophiles in vitro and in vivo.
    Valadon P; Dansette PM; Girault JP; Amar C; Mansuy D
    Chem Res Toxicol; 1996 Dec; 9(8):1403-13. PubMed ID: 8951246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a furazolidone metabolite responsible for the inhibition of amino oxidases.
    Timperio AM; Kuiper HA; Zolla L
    Xenobiotica; 2003 Feb; 33(2):153-67. PubMed ID: 12623758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsomal metabolism of the 5-lipoxygenase inhibitor L-739,010: evidence for furan bioactivation.
    Zhang KE; Naue JA; Arison B; Vyas KP
    Chem Res Toxicol; 1996 Mar; 9(2):547-54. PubMed ID: 8839061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of porcine hepatocytes for biotransformation studies of veterinary drugs.
    Hoogenboom LA; Pastoor FJ; Clous WE; Hesse SE; Kuiper HA
    Xenobiotica; 1989 Nov; 19(11):1207-19. PubMed ID: 2618075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.