BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36907263)

  • 1. Mechanistic-mathematical modeling of intracranial pressure (ICP) profiles over a single heart cycle. The fundament of the ICP curve form.
    Domogo AA; Reinstrup P; Ottesen JT
    J Theor Biol; 2023 May; 564():111451. PubMed ID: 36907263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a mathematical model for understanding intracranial pressure curve morphology.
    Unnerbäck M; Ottesen JT; Reinstrup P
    J Clin Monit Comput; 2020 Jun; 34(3):469-481. PubMed ID: 31264130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ICP curve morphology and intracranial flow-volume changes: a simultaneous ICP and cine phase contrast MRI study in humans.
    Unnerbäck M; Ottesen JT; Reinstrup P
    Acta Neurochir (Wien); 2018 Feb; 160(2):219-224. PubMed ID: 29273948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of brain, blood, and CSF: a novel mathematical model of cerebral edema.
    Doron O; Zadka Y; Barnea O; Rosenthal G
    Fluids Barriers CNS; 2021 Sep; 18(1):42. PubMed ID: 34530863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of airway pressure changes on intracranial pressure (ICP) and the blood flow velocity in the middle cerebral artery (VMCA).
    Ludwig HC; Klingler M; Timmermann A; Weyland W; Mursch K; Reparon C; Markakis E
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2000 Mar; 35(3):141-5. PubMed ID: 10768051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of reduced cerebral blood flow in cerebral edema and elevated intracranial pressure.
    Zadka Y; Doron O; Rosenthal G; Barnea O
    J Appl Physiol (1985); 2023 Feb; 134(2):444-454. PubMed ID: 36603049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling cerebral autoregulation and CO2 reactivity in patients with severe head injury.
    Lodi CA; Ter Minassian A; Beydon L; Ursino M
    Am J Physiol; 1998 May; 274(5):H1729-41. PubMed ID: 9612385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limitation of cerebral blood flow by increased venous outflow resistance in elevated ICP.
    Zadka Y; Rosenthal G; Doron O; Barnea O
    J Appl Physiol (1985); 2024 Jan; 136(1):224-232. PubMed ID: 38059286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Intracranial Pressure Attenuates the Pulsating Component of Cerebral Venous Outflow.
    Unnerbäck M; Ottesen JT; Reinstrup P
    Neurocrit Care; 2019 Oct; 31(2):273-279. PubMed ID: 31240621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.
    Ursino M; Lodi CA
    Am J Physiol; 1998 May; 274(5):H1715-28. PubMed ID: 9612384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive intracranial compliance and pressure based on dynamic magnetic resonance imaging of blood flow and cerebrospinal fluid flow: review of principles, implementation, and other noninvasive approaches.
    Raksin PB; Alperin N; Sivaramakrishnan A; Surapaneni S; Lichtor T
    Neurosurg Focus; 2003 Apr; 14(4):e4. PubMed ID: 15679303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.
    Czosnyka Z; Kim DJ; Balédent O; Schmidt EA; Smielewski P; Czosnyka M
    Acta Neurochir Suppl; 2018; 126():233-236. PubMed ID: 29492567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography.
    Greitz D
    Acta Radiol Suppl; 1993; 386():1-23. PubMed ID: 8517189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of magnetic resonance imaging-based blood and cerebrospinal fluid flow measurements in patients with Chiari I malformation: a system approach.
    Alperin N; Kulkarni K; Loth F; Roitberg B; Foroohar M; Mafee MF; Lichtor T
    Neurosurg Focus; 2001 Jul; 11(1):E6. PubMed ID: 16724816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative model of the cerebral windkessel and its relevance to disorders of intracranial dynamics.
    Egnor M; Yang L; Mani RM; Fiore SM; Djurić PM
    J Neurosurg Pediatr; 2023 Sep; 32(3):302-311. PubMed ID: 37382303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postural influence on intracranial fluid dynamics: an overview.
    Sagirov AF; Sergeev TV; Shabrov AV; Yurov AY; Guseva NL; Agapova EA
    J Physiol Anthropol; 2023 Apr; 42(1):5. PubMed ID: 37055862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure.
    Behrens A; Lenfeldt N; Ambarki K; Malm J; Eklund A; Koskinen LO
    Neurosurgery; 2010 Jun; 66(6):1050-7. PubMed ID: 20495421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI evidence for altered venous drainage and intracranial compliance in mild traumatic brain injury.
    Pomschar A; Koerte I; Lee S; Laubender RP; Straube A; Heinen F; Ertl-Wagner B; Alperin N
    PLoS One; 2013; 8(2):e55447. PubMed ID: 23405151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.