These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 36907345)
21. Assessment of uptake and phytotoxicity of cyanobacterial extracts containing microcystins or cylindrospermopsin on parsley (Petroselinum crispum L.) and coriander (Coriandrum sativum L). Pereira AL; Azevedo J; Vasconcelos V Environ Sci Pollut Res Int; 2017 Jan; 24(2):1999-2009. PubMed ID: 27807783 [TBL] [Abstract][Full Text] [Related]
22. Subacute microcystin-LR exposure alters the metabolism of thyroid hormones in juvenile zebrafish (Danio Rerio). Liu Z; Tang R; Li D; Hu Q; Wang Y Toxins (Basel); 2015 Jan; 7(2):337-52. PubMed ID: 25647779 [TBL] [Abstract][Full Text] [Related]
23. Potential Endocrine Disruption of Cyanobacterial Toxins, Microcystins and Cylindrospermopsin: A Review. Casas-Rodriguez A; Cameán AM; Jos A Toxins (Basel); 2022 Dec; 14(12):. PubMed ID: 36548779 [TBL] [Abstract][Full Text] [Related]
24. Adsorption characteristics of multiple microcystins and cylindrospermopsin on sediment: Implications for toxin monitoring and drinking water treatment. Maghsoudi E; Prévost M; Vo Duy S; Sauvé S; Dorner S Toxicon; 2015 Sep; 103():48-54. PubMed ID: 26091872 [TBL] [Abstract][Full Text] [Related]
25. Waterborne exposure to microcystin-LR alters thyroid hormone levels, iodothyronine deiodinase activities, and gene transcriptions in juvenile zebrafish (Danio rerio). Hu Q; Liu Z; Gao Y; Jia D; Tang R; Li L; Li D Chemosphere; 2020 Feb; 241():125037. PubMed ID: 31683436 [TBL] [Abstract][Full Text] [Related]
26. Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation. Onstad GD; Strauch S; Meriluoto J; Codd GA; Von Gunten U Environ Sci Technol; 2007 Jun; 41(12):4397-404. PubMed ID: 17626442 [TBL] [Abstract][Full Text] [Related]
27. Effect of cold food storage techniques on the contents of Microcystins and Cylindrospermopsin in leaves of spinach (Spinacia oleracea) and lettuce (Lactuca sativa). Casas Rodríguez A; Diez-Quijada L; Prieto AI; Jos A; Cameán AM Food Chem Toxicol; 2022 Dec; 170():113507. PubMed ID: 36334728 [TBL] [Abstract][Full Text] [Related]
28. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. Machado J; Campos A; Vasconcelos V; Freitas M Environ Res; 2017 Feb; 153():191-204. PubMed ID: 27702441 [TBL] [Abstract][Full Text] [Related]
30. Degradation of microcystin-LR and cylindrospermopsin by continuous flow UV-A photocatalysis over immobilised TiO Camacho-Muñoz D; Fervers AS; Pestana CJ; Edwards C; Lawton LA J Environ Manage; 2020 Dec; 276():111368. PubMed ID: 32942219 [TBL] [Abstract][Full Text] [Related]
31. Effects of exposure to microcystin-LR at environmentally relevant concentrations on the metabolism of thyroid hormones in adult zebrafish (Danio rerio). Liu Z; Li D; Hu Q; Tang R; Li L Toxicon; 2016 Dec; 124():15-25. PubMed ID: 27826021 [TBL] [Abstract][Full Text] [Related]
32. Degradation of widespread cyanotoxins with high impact in drinking water (microcystins, cylindrospermopsin, anatoxin-a and saxitoxin) by CWPO. Munoz M; Nieto-Sandoval J; Cirés S; de Pedro ZM; Quesada A; Casas JA Water Res; 2019 Oct; 163():114853. PubMed ID: 31310856 [TBL] [Abstract][Full Text] [Related]
33. Uterotrophic assay, Hershberger assay, and subacute oral toxicity study of 4,4'-butylidenebis(2-tert-butyl-5-methylphenol) and 3-(dibutylamino)phenol, based on the OECD draft protocols. Yamasaki K; Miyata K; Shiraishi K; Muroi T; Higashihara N; Oshima H; Minobe Y Arch Toxicol; 2008 May; 82(5):301-11. PubMed ID: 17924095 [TBL] [Abstract][Full Text] [Related]
34. 7-epi-cylindrospermopsin and microcystin producers among diverse Anabaena/Dolichospermum/Aphanizomenon CyanoHABs in Oregon, USA. Dreher TW; Foss AJ; Davis EW; Mueller RS Harmful Algae; 2022 Jul; 116():102241. PubMed ID: 35710201 [TBL] [Abstract][Full Text] [Related]
35. Detection of potentially producing cylindrospermopsin and microcystin strains in mixed populations of cyanobacteria by simultaneous amplification of cylindrospermopsin and microcystin gene regions. Barón-Sola A; Ouahid Y; del Campo FF Ecotoxicol Environ Saf; 2012 Jan; 75(1):102-8. PubMed ID: 21996586 [TBL] [Abstract][Full Text] [Related]
36. An integrated omic analysis of hepatic alteration in medaka fish chronically exposed to cyanotoxins with possible mechanisms of reproductive toxicity. Qiao Q; Le Manach S; Huet H; Duvernois-Berthet E; Chaouch S; Duval C; Sotton B; Ponger L; Marie A; Mathéron L; Lennon S; Bolbach G; Djediat C; Bernard C; Edery M; Marie B Environ Pollut; 2016 Dec; 219():119-131. PubMed ID: 27814527 [TBL] [Abstract][Full Text] [Related]
37. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Rodríguez E; Onstad GD; Kull TP; Metcalf JS; Acero JL; von Gunten U Water Res; 2007 Aug; 41(15):3381-93. PubMed ID: 17583762 [TBL] [Abstract][Full Text] [Related]
38. Histological, cytological and biochemical alterations induced by microcystin-LR and cylindrospermopsin in white mustard (Sinapis alba L.) seedlings. Máthé C; Vasas G; Borbély G; Erdődi F; Beyer D; Kiss A; Surányi G; Gonda S; Jámbrik K; M-Hamvas M Acta Biol Hung; 2013 Mar; 64(1):71-85. PubMed ID: 23567832 [TBL] [Abstract][Full Text] [Related]
39. Histological and chemical damage induced by microcystin-LR and microcystin-RR on land snail Helix aspersa tissues after acute exposure. Zaidi H; Amrani A; Sedrati F; Maaref H; Leghrib F; Benamara M; Amara H; Wang Z; Nasri H Comp Biochem Physiol C Toxicol Pharmacol; 2021 Jul; 245():109031. PubMed ID: 33737222 [TBL] [Abstract][Full Text] [Related]
40. Cyanobacteria and microcystins in Koka reservoir (Ethiopia). Major Y; Kifle D; Spoof L; Meriluoto J Environ Sci Pollut Res Int; 2018 Sep; 25(27):26861-26873. PubMed ID: 30003488 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]