These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36907484)

  • 41. Co single atoms anchored on straw biochar as an efficient peroxydisulfate activator for ultrafast removal of antibiotics.
    Zhang H; Xu G; Yu Y
    Environ Pollut; 2023 Sep; 333():121983. PubMed ID: 37301459
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetically modified in-situ N-doped Enteromorpha prolifera derived biochar for peroxydisulfate activation: Electron transfer induced singlet oxygen non-radical pathway.
    Xiong S; Deng Y; Gong D; Tang R; Zheng J; Li L; Zhou Z; Su L; Liao C; Yang L
    Chemosphere; 2021 Dec; 284():131404. PubMed ID: 34323791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-radical pathway dominated degradation of organic pollutants by nitrogen-doped microtube porous graphitic carbon derived from biomass for activating peroxymonosulfate: Performance, mechanism and environmental application.
    Zhu K; Liu C; Xia W; Wang Y; He H; Lei L; Ai Y; Chen W; Liu X
    J Colloid Interface Sci; 2022 Nov; 625():890-902. PubMed ID: 35777096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synergistic activation of peroxymonosulfate by 3D CoNiO
    Liu Z; Shi X; Yan Z; Sun Z
    Bioresour Technol; 2024 Aug; 406():130983. PubMed ID: 38880266
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation.
    Liu F; Ding J; Zhao G; Zhao Q; Wang K; Wang G; Gao Q
    Chemosphere; 2022 Sep; 302():134868. PubMed ID: 35533937
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation.
    Li X; Jia Y; Zhou M; Su X; Sun J
    J Hazard Mater; 2020 Oct; 397():122764. PubMed ID: 32388092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mechanism differences between sulfadiazine degradation and antibiotic resistant bacteria inactivation by iron-based graphitic biochar and peroxydisulfate system.
    Ma Y; Xu S; Huang Y; Du J; Wang J; Gao B; Song J; Ma S; Jia H; Zhan S
    J Hazard Mater; 2024 Aug; 475():134907. PubMed ID: 38878442
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polar electric field-modulated peroxymonosulfate selective activation for removal of organic contaminants via non-radical electron transfer process.
    Wu B; Li Z; Zu Y; Lai B; Wang A
    Water Res; 2023 Nov; 246():120678. PubMed ID: 37812980
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Importance of carbon structure for nitrogen and sulfur co-doping to promote superior ciprofloxacin removal via peroxymonosulfate activation.
    Gasim MF; Veksha A; Lisak G; Low SC; Hamidon TS; Hussin MH; Oh WD
    J Colloid Interface Sci; 2023 Mar; 634():586-600. PubMed ID: 36549207
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative study on heterogeneous activation of peroxydisulfate and peroxymonosulfate with black carbon derived from coal tar residues: Contribution of free radical,
    Tian S; Liu Y; Wang Y; Qi J; Tian L; Ma J; Wen G; Wang L
    J Hazard Mater; 2022 Jul; 433():128819. PubMed ID: 35381510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thiourea-assisted one-step fabrication of a novel nitrogen and sulfur co-doped biochar from nanocellulose as metal-free catalyst for efficient activation of peroxymonosulfate.
    Xu Y; Liu S; Wang M; Zhang J; Ding H; Song Y; Zhu Y; Pan Q; Zhao C; Deng H
    J Hazard Mater; 2021 Aug; 416():125796. PubMed ID: 33838508
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of biochar mediated catalytic degradation of quinolone antibiotics: Important role of environmentally persistent free radicals.
    Zhang Y; Xu M; Liu X; Wang M; Zhao J; Li S; Yin M
    Bioresour Technol; 2021 Apr; 326():124780. PubMed ID: 33556708
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The adsorption affinity of N-doped biochar plays a crucial role in peroxydisulfate activation and bisphenol A oxidative degradation.
    Zhong J; Ma Y; Jiang S; Dai G; Liu Z; Shu Y
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):88630-88643. PubMed ID: 35834086
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Complexation and degradation of tetracycline by activation of molecular oxygen with biochar-supported nano-zero-valent copper composite.
    Zhang X; Shi C; Hu H; Zhou Z; Zhao X
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):34827-34839. PubMed ID: 36520295
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: Important roles of defects and nitrogen, and detoxification of intermediates.
    Wang W; Chen M
    J Colloid Interface Sci; 2022 May; 613():57-70. PubMed ID: 35032777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fe
    Wu Q; Zhang Y; Liu H; Liu H; Tao J; Cui MH; Zheng Z; Wen D; Zhan X
    Water Res; 2022 Oct; 224():119022. PubMed ID: 36099758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanisms and influencing factors for electron transfer complex in metal-biochar nanocomposites activated peroxydisulfate.
    Luo H; Wan Y; Zhou H; Cai Y; Zhu M; Dang Z; Yin H
    J Hazard Mater; 2022 Sep; 438():129461. PubMed ID: 35780737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancement of urea removal from reclaimed water using thermally modified spent coffee ground biochar activated by adding peroxymonosulfate for ultrapure water production.
    Zhang X; Yang Y; Hao Ngo H; Guo W; Long T; Wang X; Zhang J; Sun F
    Bioresour Technol; 2022 Apr; 349():126850. PubMed ID: 35167903
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient peroxymonosulfate activation by biochar-based nanohybrids for the degradation of pharmaceutical and personal care products in aquatic environments.
    Liu T; Cui K; Li CX; Chen Y; Wang Q; Yuan X; Chen Y; Liu J; Zhang Q
    Chemosphere; 2023 Jan; 311(Pt 1):137084. PubMed ID: 36334754
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetics of PMS activation by graphene oxide and biochar.
    Wang S; Wang J
    Chemosphere; 2020 Jan; 239():124812. PubMed ID: 31521932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.