These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

670 related articles for article (PubMed ID: 36907592)

  • 1. Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation.
    Lee SB; Hong Y; Cho YJ; Jeong D; Lee J; Yoon SH; Lee S; Choi YH; Cheon JE
    Korean J Radiol; 2023 Apr; 24(4):294-304. PubMed ID: 36907592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving radiomics reproducibility using deep learning-based image conversion of CT reconstruction algorithms in hepatocellular carcinoma patients.
    Lee H; Chang W; Kim HY; Sung P; Cho J; Lee YJ; Kim YH
    Eur Radiol; 2024 Mar; 34(3):2036-2047. PubMed ID: 37656175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation.
    Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ
    Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated segmentation of liver and hepatic vessels on portal venous phase computed tomography images using a deep learning algorithm.
    Li S; Li XG; Zhou F; Zhang Y; Bie Z; Cheng L; Peng J; Li B
    J Appl Clin Med Phys; 2024 Aug; 25(8):e14397. PubMed ID: 38773719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images.
    Ahn Y; Yoon JS; Lee SS; Suk HI; Son JH; Sung YS; Lee Y; Kang BK; Kim HS
    Korean J Radiol; 2020 Aug; 21(8):987-997. PubMed ID: 32677383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images.
    Liu H; Zhou Y; Gou S; Luo Z
    Comput Biol Med; 2024 May; 174():108420. PubMed ID: 38613896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors.
    Kavur AE; Gezer NS; Barış M; Şahin Y; Özkan S; Baydar B; Yüksel U; Kılıkçıer Ç; Olut Ş; Bozdağı Akar G; Ünal G; Dicle O; Selver MA
    Diagn Interv Radiol; 2020 Jan; 26(1):11-21. PubMed ID: 31904568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abdomen tissues segmentation from computed tomography images using deep learning and level set methods.
    Gong Z; Song J; Guo W; Ju R; Zhao D; Tan W; Zhou W; Zhang G
    Math Biosci Eng; 2022 Sep; 19(12):14074-14085. PubMed ID: 36654080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery.
    Wang T; Lei Y; Tian S; Jiang X; Zhou J; Liu T; Dresser S; Curran WJ; Shu HK; Yang X
    Med Phys; 2019 Jul; 46(7):3133-3141. PubMed ID: 31050804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-Based Image Conversion Improves the Reproducibility of Computed Tomography Radiomics Features: A Phantom Study.
    Lee SB; Cho YJ; Hong Y; Jeong D; Lee J; Kim SH; Lee S; Choi YH
    Invest Radiol; 2022 May; 57(5):308-317. PubMed ID: 34839305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully-automated multi-organ segmentation tool applicable to both non-contrast and post-contrast abdominal CT: deep learning algorithm developed using dual-energy CT images.
    Jeon SK; Joo I; Park J; Kim JM; Park SJ; Yoon SH
    Sci Rep; 2024 Feb; 14(1):4378. PubMed ID: 38388824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning image reconstruction to improve accuracy of iodine quantification and image quality in dual-energy CT of the abdomen: a phantom and clinical study.
    Fukutomi A; Sofue K; Ueshima E; Negi N; Ueno Y; Tsujita Y; Yabe S; Yamaguchi T; Shimada R; Kusaka A; Hori M; Murakami T
    Eur Radiol; 2023 Feb; 33(2):1388-1399. PubMed ID: 36114848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation.
    Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X
    Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative and qualitative assessments of deep learning image reconstruction in low-keV virtual monoenergetic dual-energy CT.
    Xu JJ; Lönn L; Budtz-Jørgensen E; Hansen KL; Ulriksen PS
    Eur Radiol; 2022 Oct; 32(10):7098-7107. PubMed ID: 35895120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based image reconstruction of 40-keV virtual monoenergetic images of dual-energy CT for the assessment of hypoenhancing hepatic metastasis.
    Lee T; Lee JM; Yoon JH; Joo I; Bae JS; Yoo J; Kim JH; Ahn C; Kim JH
    Eur Radiol; 2022 Sep; 32(9):6407-6417. PubMed ID: 35380228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.