These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 36907654)
1. AMHMDA: attention aware multi-view similarity networks and hypergraph learning for miRNA-disease associations identification. Ning Q; Zhao Y; Gao J; Chen C; Li X; Li T; Yin M Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36907654 [TBL] [Abstract][Full Text] [Related]
2. Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network. Liang X; Guo M; Jiang L; Fu Y; Zhang P; Chen Y Interdiscip Sci; 2024 Jun; 16(2):289-303. PubMed ID: 38286905 [TBL] [Abstract][Full Text] [Related]
3. HGCLAMIR: Hypergraph contrastive learning with attention mechanism and integrated multi-view representation for predicting miRNA-disease associations. Ouyang D; Liang Y; Wang J; Li L; Ai N; Feng J; Lu S; Liao S; Liu X; Xie S PLoS Comput Biol; 2024 Apr; 20(4):e1011927. PubMed ID: 38652712 [TBL] [Abstract][Full Text] [Related]
4. Predicting miRNA-disease associations based on graph random propagation network and attention network. Zhong T; Li Z; You ZH; Nie R; Zhao H Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35079767 [TBL] [Abstract][Full Text] [Related]
5. Multi-view Multichannel Attention Graph Convolutional Network for miRNA-disease association prediction. Tang X; Luo J; Shen C; Lai Z Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33963829 [TBL] [Abstract][Full Text] [Related]
6. Predicting miRNA-disease associations based on PPMI and attention network. Xie X; Wang Y; He K; Sheng N BMC Bioinformatics; 2023 Mar; 24(1):113. PubMed ID: 36959547 [TBL] [Abstract][Full Text] [Related]
7. Dual-neighbourhood information aggregation and feature fusion for prediction of miRNA-disease association. Liu W; Lan Z; Li Z; Sun X; Lu X Comput Biol Med; 2024 Oct; 181():109068. PubMed ID: 39208505 [TBL] [Abstract][Full Text] [Related]
8. Predicting Mirna-Disease Associations Based on Neighbor Selection Graph Attention Networks. Zhao H; Li Z; You ZH; Nie R; Zhong T IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1298-1307. PubMed ID: 36067101 [TBL] [Abstract][Full Text] [Related]
9. Adaptive deep propagation graph neural network for predicting miRNA-disease associations. Hu H; Zhao H; Zhong T; Dong X; Wang L; Han P; Li Z Brief Funct Genomics; 2023 Nov; 22(5):453-462. PubMed ID: 37078739 [TBL] [Abstract][Full Text] [Related]
10. Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization. Ding Y; Lei X; Liao B; Wu FX IEEE J Biomed Health Inform; 2022 Jan; 26(1):446-457. PubMed ID: 34111017 [TBL] [Abstract][Full Text] [Related]
11. Predicting miRNA-disease associations based on multi-view information fusion. Xie X; Wang Y; Sheng N; Zhang S; Cao Y; Fu Y Front Genet; 2022; 13():979815. PubMed ID: 36238163 [TBL] [Abstract][Full Text] [Related]
12. FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks. Li J; Li Z; Nie R; You Z; Bao W Mol Genet Genomics; 2020 Sep; 295(5):1197-1209. PubMed ID: 32500265 [TBL] [Abstract][Full Text] [Related]
13. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks. Xuan P; Sun H; Wang X; Zhang T; Pan S Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729 [TBL] [Abstract][Full Text] [Related]
14. Prediction of miRNA-disease associations based on strengthened hypergraph convolutional autoencoder. Xie GB; Yu JR; Lin ZY; Gu GS; Chen RB; Xu HJ; Liu ZG Comput Biol Chem; 2024 Feb; 108():107992. PubMed ID: 38056378 [TBL] [Abstract][Full Text] [Related]
15. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information. Lou Z; Cheng Z; Li H; Teng Z; Liu Y; Tian Z Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524503 [TBL] [Abstract][Full Text] [Related]
16. MVNMDA: A Multi-View Network Combing Semantic and Global Features for Predicting miRNA-Disease Association. Yang C; Wang Z; Zhang S; Li X; Wang X; Liu J; Li R; Zeng S Molecules; 2023 Dec; 29(1):. PubMed ID: 38202814 [TBL] [Abstract][Full Text] [Related]
17. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion. Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611 [TBL] [Abstract][Full Text] [Related]
18. A Novel Computational Model for Predicting microRNA-Disease Associations Based on Heterogeneous Graph Convolutional Networks. Li C; Liu H; Hu Q; Que J; Yao J Cells; 2019 Aug; 8(9):. PubMed ID: 31455028 [TBL] [Abstract][Full Text] [Related]
19. LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks. Zhang B; Wang H; Ma C; Huang H; Fang Z; Qu J BMC Bioinformatics; 2024 Oct; 25(1):332. PubMed ID: 39407120 [TBL] [Abstract][Full Text] [Related]
20. DAEMDA: A Method with Dual-Channel Attention Encoding for miRNA-Disease Association Prediction. Dong B; Sun W; Xu D; Wang G; Zhang T Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]