BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36907846)

  • 41. [The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana].
    Li ZQ; Li JT; Bing J; Zhang GF
    Yi Chuan; 2019 Jun; 41(6):534-547. PubMed ID: 31257201
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alternative oxidase pathway is involved in the exogenous SNP-elevated tolerance of Medicago truncatula to salt stress.
    Jian W; Zhang DW; Zhu F; Wang SX; Pu XJ; Deng XG; Luo SS; Lin HH
    J Plant Physiol; 2016 Apr; 193():79-87. PubMed ID: 26962709
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression of a Medicago falcata small GTPase gene, MfARL1 enhanced tolerance to salt stress in Arabidopsis thaliana.
    Wang TZ; Xia XZ; Zhao MG; Tian QY; Zhang WH
    Plant Physiol Biochem; 2013 Feb; 63():227-35. PubMed ID: 23298681
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genome-wide identification, characterization and expression analysis of
    Zhao Y; Wang L; Zhao P; Liu Z; Guo S; Li Y; Liu H
    PeerJ; 2022; 10():e14034. PubMed ID: 36168431
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cross-family translational genomics of abiotic stress-responsive genes between Arabidopsis and Medicago truncatula.
    Hyung D; Lee C; Kim JH; Yoo D; Seo YS; Jeong SC; Lee JH; Chung Y; Jung KH; Cook DR; Choi HK
    PLoS One; 2014; 9(3):e91721. PubMed ID: 24675968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Translational Landscape of
    An Y; Wang Z; Liu B; Cao Y; Chen L
    J Agric Food Chem; 2023 Nov; 71(44):16657-16668. PubMed ID: 37880959
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation and Identification of
    Yuan B; Chen M; Li S
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32033046
    [No Abstract]   [Full Text] [Related]  

  • 48. Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis.
    Yang X; He K; Chi X; Chai G; Wang Y; Jia C; Zhang H; Zhou G; Hu R
    Plant Sci; 2018 Dec; 277():229-241. PubMed ID: 30466589
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108.
    Wang TZ; Tian QY; Wang BL; Zhao MG; Zhang WH
    BMC Plant Biol; 2014 May; 14():122. PubMed ID: 24885873
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide analysis of autophagy-related genes in Medicago truncatula highlights their roles in seed development and response to drought stress.
    Yang M; Wang L; Chen C; Guo X; Lin C; Huang W; Chen L
    Sci Rep; 2021 Nov; 11(1):22933. PubMed ID: 34824334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ectopic Expression of
    Zheng J; Lin R; Pu L; Wang Z; Mei Q; Zhang M; Jian S
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33429984
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic analysis of tolerance to boron toxicity in the legume Medicago truncatula.
    Bogacki P; Peck DM; Nair RM; Howie J; Oldach KH
    BMC Plant Biol; 2013 Mar; 13():54. PubMed ID: 23531152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MtZR1, a PRAF protein, is involved in the development of roots and symbiotic root nodules in Medicago truncatula.
    Hopkins J; Pierre O; Kazmierczak T; Gruber V; Frugier F; Clement M; Frendo P; Herouart D; Boncompagni E
    Plant Cell Environ; 2014 Mar; 37(3):658-69. PubMed ID: 23961805
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.
    Safi H; Saibi W; Alaoui MM; Hmyene A; Masmoudi K; Hanin M; Brini F
    Plant Physiol Biochem; 2015 Apr; 89():64-75. PubMed ID: 25703105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Arabidopsis HP6 gene is expressed in Medicago truncatula lateral roots and root nodule primordia.
    Moreira S; Braga T; Carvalho H; Campilho A
    Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23759550
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family Under Abiotic Stresses in
    Liu X; Zhang H; Ma L; Wang Z; Wang K
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33238556
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis.
    Zhao X; Yang X; Pei S; He G; Wang X; Tang Q; Jia C; Lu Y; Hu R; Zhou G
    Gene; 2016 Jul; 586(1):158-69. PubMed ID: 27085481
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress.
    Song SY; Chen Y; Chen J; Dai XY; Zhang WH
    Planta; 2011 Aug; 234(2):331-45. PubMed ID: 21448719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco.
    Charrier A; Lelièvre E; Limami AM; Planchet E
    J Plant Physiol; 2013 Jun; 170(9):874-7. PubMed ID: 23399404
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses.
    Song J; Mo X; Yang H; Yue L; Song J; Mo B
    PLoS One; 2017; 12(8):e0182402. PubMed ID: 28771553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.