These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36907883)

  • 1. Photothermally induced natural vibration for versatile and high-speed actuation of crystals.
    Hagiwara Y; Hasebe S; Fujisawa H; Morikawa J; Asahi T; Koshima H
    Nat Commun; 2023 Mar; 14(1):1354. PubMed ID: 36907883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photothermally Driven High-Speed Crystal Actuation and Its Simulation.
    Hasebe S; Hagiwara Y; Komiya J; Ryu M; Fujisawa H; Morikawa J; Katayama T; Yamanaka D; Furube A; Sato H; Asahi T; Koshima H
    J Am Chem Soc; 2021 Jun; 143(23):8866-8877. PubMed ID: 34096298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Thermal Actuators for Soft Robotics.
    Wu S; Baker GL; Yin J; Zhu Y
    Soft Robot; 2022 Dec; 9(6):1031-1039. PubMed ID: 34874763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel.
    Zhao Y; Lo CY; Ruan L; Pi CH; Kim C; Alsaid Y; Frenkel I; Rico R; Tsao TC; He X
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics.
    Liu JA; Gillen JH; Mishra SR; Evans BA; Tracy JB
    Sci Adv; 2019 Aug; 5(8):eaaw2897. PubMed ID: 31414046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Frequency Vibration Energy Harvesting With Bidomain LiNbO
    Vidal JV; Turutin AV; Kubasov IV; Kislyuk AM; Malinkovich MD; Parkhomenko YN; Kobeleva SP; Pakhomov OV; Sobolev NA; Kholkin AL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1480-1487. PubMed ID: 30990180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large amplitude vibration of a cantilever actuated by a high-frequency pulsed laser.
    Li J; Sun T; Meng Z; Liao X
    Opt Express; 2022 May; 30(11):19165-19175. PubMed ID: 36221701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeatable and Reprogrammable Shape Morphing from Photoresponsive Gold Nanorod/Liquid Crystal Elastomers.
    Wang Y; Dang A; Zhang Z; Yin R; Gao Y; Feng L; Yang S
    Adv Mater; 2020 Nov; 32(46):e2004270. PubMed ID: 33043501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Well Drill Assisted with High-Frequency Vibration Using the Bending Mode.
    Qi X; Chen W; Liu Y; Tang X; Shi S
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29641481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma-Induced Polymerizations: A New Synthetic Entry in Liquid Crystal Elastomer Actuators.
    Ni B; Zhang M; Guyon C; Keller P; Tatoulian M; Li MH
    Macromol Rapid Commun; 2020 Oct; 41(19):e2000385. PubMed ID: 32812328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing efficiency, speed, and responsivity of vanadium dioxide based photothermally driven actuators using single-wall carbon nanotube thin-films.
    Wang T; Torres D; Fernández FE; Green AJ; Wang C; Sepúlveda N
    ACS Nano; 2015 Apr; 9(4):4371-8. PubMed ID: 25853931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a tunable photothermal actuator
    Lee C; Park JH; Kim M; Kim JS; Shim TS
    Soft Matter; 2022 Jun; 18(24):4604-4612. PubMed ID: 35696834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Versatile Soft Crawling Robot with Rapid Locomotion.
    Qin L; Liang X; Huang H; Chui CK; Yeow RC; Zhu J
    Soft Robot; 2019 Aug; 6(4):455-467. PubMed ID: 30883283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic and mechanical profile of the self-actuation of thermosalient crystal twins of 1,2,4,5-tetrabromobenzene: a molecular crystalline analogue of a bimetallic strip.
    Sahoo SC; Sinha SB; Kiran MS; Ramamurty U; Dericioglu AF; Reddy CM; Naumov P
    J Am Chem Soc; 2013 Sep; 135(37):13843-50. PubMed ID: 23895677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting Mechanical Instabilities in Soft Robotics: Control, Sensing, and Actuation.
    Pal A; Restrepo V; Goswami D; Martinez RV
    Adv Mater; 2021 May; 33(19):e2006939. PubMed ID: 33792085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multipole Magnetoactive Elastomer for Vibration-Driven Locomotion.
    Reiche M; Becker TI; Stepanov GV; Zimmermann K
    Soft Robot; 2023 Aug; 10(4):770-784. PubMed ID: 37010374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape Memory Alloy (SMA)-Based Microscale Actuators with 60% Deformation Rate and 1.6 kHz Actuation Speed.
    Lee HT; Kim MS; Lee GY; Kim CS; Ahn SH
    Small; 2018 Jun; 14(23):e1801023. PubMed ID: 29717811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strong and tough gelatin/polyvinyl alcohol double network hydrogel actuator with superior actuation strength and fast actuation speed.
    Yao S; Sun X; Ye L; Liang H
    Soft Matter; 2022 Dec; 18(48):9197-9204. PubMed ID: 36454219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroresponsive Ionic Liquid Crystal Elastomers.
    Feng C; Rajapaksha CPH; Cedillo JM; Piedrahita C; Cao J; Kaphle V; Lüssem B; Kyu T; Jákli A
    Macromol Rapid Commun; 2019 Oct; 40(19):e1900299. PubMed ID: 31348584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.