BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36908083)

  • 1. DeepDetect: Deep Learning of Peptide Detectability Enhanced by Peptide Digestibility and Its Application to DIA Library Reduction.
    Yang J; Cheng Z; Gong F; Fu Y
    Anal Chem; 2023 Apr; 95(15):6235-6243. PubMed ID: 36908083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AP3: An Advanced Proteotypic Peptide Predictor for Targeted Proteomics by Incorporating Peptide Digestibility.
    Gao Z; Chang C; Yang J; Zhu Y; Fu Y
    Anal Chem; 2019 Jul; 91(13):8705-8711. PubMed ID: 31247716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepDigest: Prediction of Protein Proteolytic Digestion with Deep Learning.
    Yang J; Gao Z; Ren X; Sheng J; Xu P; Chang C; Fu Y
    Anal Chem; 2021 Apr; 93(15):6094-6103. PubMed ID: 33826301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics.
    Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L
    Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data.
    Qeli E; Omasits U; Goetze S; Stekhoven DJ; Frey JE; Basler K; Wollscheid B; Brunner E; Ahrens CH
    J Proteomics; 2014 Aug; 108():269-83. PubMed ID: 24878426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning.
    Gessulat S; Schmidt T; Zolg DP; Samaras P; Schnatbaum K; Zerweck J; Knaute T; Rechenberger J; Delanghe B; Huhmer A; Reimer U; Ehrlich HC; Aiche S; Kuster B; Wilhelm M
    Nat Methods; 2019 Jun; 16(6):509-518. PubMed ID: 31133760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive spectral assay library to quantify the Escherichia coli proteome by DIA/SWATH-MS.
    Midha MK; Kusebauch U; Shteynberg D; Kapil C; Bader SL; Reddy PJ; Campbell DS; Baliga NS; Moritz RL
    Sci Data; 2020 Nov; 7(1):389. PubMed ID: 33184295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abundance-based classifier for the prediction of mass spectrometric peptide detectability upon enrichment (PPA).
    Muntel J; Boswell SA; Tang S; Ahmed S; Wapinski I; Foley G; Steen H; Springer M
    Mol Cell Proteomics; 2015 Feb; 14(2):430-40. PubMed ID: 25473088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin.
    Giansanti P; Tsiatsiani L; Low TY; Heck AJ
    Nat Protoc; 2016 May; 11(5):993-1006. PubMed ID: 27123950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of proteotypic peptide libraries for protein identification.
    Craig R; Cortens JP; Beavis RC
    Rapid Commun Mass Spectrom; 2005; 19(13):1844-50. PubMed ID: 15945033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Protease on Ultraviolet Photodissociation Mass Spectrometry for Bottom-up Proteomics.
    Greer SM; Parker WR; Brodbelt JS
    J Proteome Res; 2015 Jun; 14(6):2626-32. PubMed ID: 25950415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvements in Mass Spectrometry Assay Library Generation for Targeted Proteomics.
    Teleman J; Hauri S; Malmström J
    J Proteome Res; 2017 Jul; 16(7):2384-2392. PubMed ID: 28516777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry.
    Searle BC; Pino LK; Egertson JD; Ting YS; Lawrence RT; MacLean BX; Villén J; MacCoss MJ
    Nat Commun; 2018 Dec; 9(1):5128. PubMed ID: 30510204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning approaches for data-independent acquisition proteomics.
    Yang Y; Lin L; Qiao L
    Expert Rev Proteomics; 2021 Dec; 18(12):1031-1043. PubMed ID: 34918987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data.
    Ting YS; Egertson JD; Bollinger JG; Searle BC; Payne SH; Noble WS; MacCoss MJ
    Nat Methods; 2017 Sep; 14(9):903-908. PubMed ID: 28783153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of peptide detectability for protein identification, quantification, and experiment design in MS/MS proteomics.
    Li YF; Arnold RJ; Tang H; Radivojac P
    J Proteome Res; 2010 Dec; 9(12):6288-97. PubMed ID: 21067214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building Spectral Libraries from Narrow-Window Data-Independent Acquisition Mass Spectrometry Data.
    Heil LR; Fondrie WE; McGann CD; Federation AJ; Noble WS; MacCoss MJ; Keich U
    J Proteome Res; 2022 Jun; 21(6):1382-1391. PubMed ID: 35549345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.
    Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M
    Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.