BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36908277)

  • 1. Low-cost composite film triboelectric nanogenerators for a self-powered touch sensor.
    Fan JC; Tang XG; Sun QJ; Jiang YP; Li WH; Liu QX
    Nanoscale; 2023 Mar; 15(13):6263-6272. PubMed ID: 36908277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable Unsymmetrical Piezoelectric BaTiO
    Wang Z; Liu Z; Zhao G; Zhang Z; Zhao X; Wan X; Zhang Y; Wang ZL; Li L
    ACS Nano; 2022 Jan; 16(1):1661-1670. PubMed ID: 35014254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Single-Electrode Triboelectric Nanogenerator and Body Moving Sensor Based on Porous Na
    Cui C; Wang X; Yi Z; Yang B; Wang X; Chen X; Liu J; Yang C
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3652-3659. PubMed ID: 29313665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Layered Triboelectric Nanogenerators with Controllable Multiple Spikes for Low-Power Artificial Synaptic Devices.
    Park YJ; Ro YG; Shin YE; Park C; Na S; Chang Y; Ko H
    Adv Sci (Weinh); 2023 Dec; 10(36):e2304598. PubMed ID: 37888859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Fabrication of Polymer Triboelectric Nanogenerators for Self-Powered Insole Applications.
    Huang YJ; Chung CK
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triboelectric Nanogenerator-Based Sensor Systems for Chemical or Biological Detection.
    Zhou Q; Pan J; Deng S; Xia F; Kim T
    Adv Mater; 2021 Sep; 33(35):e2008276. PubMed ID: 34245059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in Self-Powered Sensors Based on Liquid-Solid Triboelectric Nanogenerators.
    Nguyen QT; Vu DL; Le CD; Ahn KK
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems.
    Huang P; Wen DL; Qiu Y; Yang MH; Tu C; Zhong HS; Zhang XS
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CsPbI
    Mondal S; Maiti S; Paul T; Poddar S; Das BK; Chattopadhyay KK
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9231-9246. PubMed ID: 38329419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system.
    Yang Y; Zhang H; Lin ZH; Zhou YS; Jing Q; Su Y; Yang J; Chen J; Hu C; Wang ZL
    ACS Nano; 2013 Oct; 7(10):9213-22. PubMed ID: 24006962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Self-Powered Six-Axis Tactile Sensor by Using Triboelectric Mechanism.
    Chen T; Shi Q; Yang Z; Liu J; Liu H; Sun L; Lee C
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 29986476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whey Protein Isolate Film and Laser-Ablated Textured PDMS-Based Single-Electrode Triboelectric Nanogenerator for Pressure-Sensor Application.
    Lee M; Shin J; Kim S; Gandla S
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Al/PDMS TENG with Novel Complex Morphology of Two-Height Microneedles Array for High-Sensitivity Force-Sensor and Self-Powered Application.
    Ke KH; Chung CK
    Small; 2020 Sep; 16(35):e2001209. PubMed ID: 32583613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-friendly pectin polymer film-based triboelectric nanogenerator for energy scavenging.
    Patnam H; Graham SA; Manchi P; Vasant Paranjape M; Yu JS
    Nanoscale; 2022 Sep; 14(36):13236-13247. PubMed ID: 36052664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holistically Engineered Polymer-Polymer and Polymer-Ion Interactions in Biocompatible Polyvinyl Alcohol Blends for High-Performance Triboelectric Devices in Self-Powered Wearable Cardiovascular Monitorings.
    Wang R; Mu L; Bao Y; Lin H; Ji T; Shi Y; Zhu J; Wu W
    Adv Mater; 2020 Aug; 32(32):e2002878. PubMed ID: 32596980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A High Sensitivity Self-Powered Wind Speed Sensor Based on Triboelectric Nanogenerators (TENGs).
    Liu Y; Liu J; Che L
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress Regarding Materials and Structures of Triboelectric Nanogenerators for AR and VR.
    Si J; Duan R; Zhang M; Liu X
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems.
    Zhao Z; Lu Y; Mi Y; Meng J; Cao X; Wang N
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO
    Suo G; Yu Y; Zhang Z; Wang S; Zhao P; Li J; Wang X
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34335-34341. PubMed ID: 27936326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.