These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36908798)

  • 1. Ascertaining the optimal myoelectric signal recording duration for pattern recognition based prostheses control.
    Asogbon MG; Samuel OW; Nsugbe E; Li Y; Kulwa F; Mzurikwao D; Chen S; Li G
    Front Neurosci; 2023; 17():1018037. PubMed ID: 36908798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses.
    Samuel OW; Li X; Geng Y; Asogbon MG; Fang P; Huang Z; Li G
    Comput Biol Med; 2017 Nov; 90():76-87. PubMed ID: 28961473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards resolving the co-existing impacts of multiple dynamic factors on the performance of EMG-pattern recognition based prostheses.
    Asogbon MG; Samuel OW; Geng Y; Oluwagbemi O; Ning J; Chen S; Ganesh N; Feng P; Li G
    Comput Methods Programs Biomed; 2020 Feb; 184():105278. PubMed ID: 31901634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.
    Geng Y; Zhou P; Li G
    J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HD-sEMG Signal Denoising Method for Improved Classification Performance in Transhumeral Amputees Pros thesis Control.
    Asogbon MG; Williams Samuel O; Ejay E; Jarrah YA; Chen S; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():857-861. PubMed ID: 34891425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiresolution Dual-Polynomial Decomposition Approach for Optimized Characterization of Motor Intent in Myoelectric Control Systems.
    Samuel OW; Asogbon MG; Khushaba R; Kulwa F; Li G
    IEEE Trans Biomed Eng; 2023 May; 70(5):1516-1527. PubMed ID: 36374882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Window Pattern Recognition Classifier for Improved Partial-Hand Prosthesis Control.
    Earley EJ; Hargrove LJ; Kuiken TA
    Front Neurosci; 2016; 10():58. PubMed ID: 26941599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.
    Benatti S; Milosevic B; Farella E; Gruppioni E; Benini L
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.
    Khushaba RN; Takruri M; Miro JV; Kodagoda S
    Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Alternative Myoelectric Pattern Recognition Approach for the Control of Hand Prostheses: A Case Study of Use in Daily Life by a Dysmelia Subject.
    Mastinu E; Ahlberg J; Lendaro E; Hermansson L; Hakansson B; Ortiz-Catalan M
    IEEE J Transl Eng Health Med; 2018; 6():2600112. PubMed ID: 29637030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.
    Samuel OW; Geng Y; Li X; Li G
    J Med Syst; 2017 Oct; 41(12):194. PubMed ID: 29080913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces.
    Leone F; Gentile C; Ciancio AL; Gruppioni E; Davalli A; Sacchetti R; Guglielmelli E; Zollo L
    Front Neurorobot; 2019; 13():42. PubMed ID: 31275131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.
    Gopal P; Gesta A; Mohebbi A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel channel selection method for multiple motion classification using high-density electromyography.
    Geng Y; Zhang X; Zhang YT; Li G
    Biomed Eng Online; 2014 Jul; 13():102. PubMed ID: 25060509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compound motion decoding based on sEMG consisting of gestures, wrist angles, and strength.
    Zhang X; Lu Z; Fan C; Wang Y; Zhang T; Li H; Tao Q
    Front Neurorobot; 2022; 16():979949. PubMed ID: 36439289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.