BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36908914)

  • 1. Study on the fermentation effect of
    Xu X; Liu W; Niu H; Hua M; Su Y; Miao X; Chi Y; Xu H; Wang J; Sun M; Li D
    Front Nutr; 2023; 10():1125720. PubMed ID: 36908914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tofu whey wastewater is a promising basal medium for microalgae culture.
    Wang SK; Wang X; Miao J; Tian YT
    Bioresour Technol; 2018 Apr; 253():79-84. PubMed ID: 29331517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Rhodotorula mucilaginosa fermentation product on the laying performance, egg quality, jejunal mucosal morphology and intestinal microbiota of hens.
    Sun J; Li M; Tang Z; Zhang X; Chen J; Sun Z
    J Appl Microbiol; 2020 Jan; 128(1):54-64. PubMed ID: 31562827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of olive mill wastewater for selective production of lipids and carotenoids by Rhodotorula glutinis.
    Keskin A; Ünlü AE; Takaç S
    Appl Microbiol Biotechnol; 2023 Aug; 107(15):4973-4985. PubMed ID: 37329489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caroteno-protein and exopolysaccharide production by co-cultures of Rhodotorula glutinis and Lactobacillus helveticus.
    Frengova G; Simova E; Beshkova D
    J Ind Microbiol Biotechnol; 1997 Apr; 18(4):272-7. PubMed ID: 9172434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of beta-carotene-enriched rice bran using solid-state fermentation of Rhodotorula glutinis.
    Roadjanakamolson M; Suntornsuk W
    J Microbiol Biotechnol; 2010 Mar; 20(3):525-31. PubMed ID: 20372023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Production of Lipids and Carotenoids by the Red Yeast Rhodotorula from Waste Glycerol Fraction and Potato Wastewater.
    Kot AM; Błażejak S; Kieliszek M; Gientka I; Bryś J
    Appl Biochem Biotechnol; 2019 Oct; 189(2):589-607. PubMed ID: 31073981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tofu Whey Wastewater as a Beneficial Supplement to Poultry Farming: Improving Production Performance and Protecting against
    Shen X; Xu Y; Yin L; Cheng J; Yin D; Zhao R; Dai Y; Hu X; Hou H; Qian K; Pan X; Liu Y
    Foods; 2022 Dec; 12(1):. PubMed ID: 36613296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of carotenoids by Rhodotorula glutinis MT-5 in submerged fermentation using the extract from waste loquat kernels as substrate.
    Taskin M; Erdal S
    J Sci Food Agric; 2011 Jun; 91(8):1440-5. PubMed ID: 21384376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of several waste substrates for carotenoid-rich yeast biomass production.
    Marova I; Carnecka M; Halienova A; Certik M; Dvorakova T; Haronikova A
    J Environ Manage; 2012 Mar; 95 Suppl():S338-42. PubMed ID: 21741756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Raman tweezers-based analysis of carotenoid synthesis in Rhodotorula glutinis].
    Yuan YF; Tao ZH; Liu JX; Wang GW; Li YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):1001-5. PubMed ID: 21714247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and optimization of microbial lipid fermentation from cellulosic ethanol wastewater by Rhodotorula glutinis based on the support vector machine.
    Zhang L; Chao B; Zhang X
    Bioresour Technol; 2020 Apr; 301():122781. PubMed ID: 31954963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient recovery from tofu whey wastewater for the economical production of docosahexaenoic acid by Schizochytrium sp. S31.
    Wang SK; Wang X; Tian YT; Cui YH
    Sci Total Environ; 2020 Mar; 710():136448. PubMed ID: 32050374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. beta-Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant.
    Bhosale P; Gadre RV
    J Ind Microbiol Biotechnol; 2001 Jun; 26(6):327-32. PubMed ID: 11571614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium.
    Xue F; Miao J; Zhang X; Luo H; Tan T
    Bioresour Technol; 2008 Sep; 99(13):5923-7. PubMed ID: 18420404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass production from glutamate fermentation wastewater by the co-culture of Candida halophila and Rhodotorula glutinis.
    Zheng S; Yang M; Yang Z; Yang Q
    Bioresour Technol; 2005 Sep; 96(13):1522-4. PubMed ID: 15939282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Carotenoid Productivity and COD Removal Efficiency by Co-culture of Rhodotorula glutinis and Chlorella vulgaris Using Starch Wastewaters as Raw Material.
    Zhang Z; Pang Z; Xu S; Wei T; Song L; Wang G; Zhang J; Yang X
    Appl Biochem Biotechnol; 2019 Sep; 189(1):193-205. PubMed ID: 30969398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing microalgal hydrolysate from dairy wastewater-grown Chlorella sorokiniana SU-1 as sustainable feedstock for polyhydroxybutyrate and β-carotene production by engineered Rhodotorula glutinis #100-29.
    Kusmayadi A; Huang CY; Leong YK; Yen HW; Lee DJ; Chang JS
    Bioresour Technol; 2023 Sep; 384():129277. PubMed ID: 37290703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process.
    Chi Z; Zheng Y; Jiang A; Chen S
    Appl Biochem Biotechnol; 2011 Sep; 165(2):442-53. PubMed ID: 21567213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chromosome-scale genome provides new insights into the typical carotenoid biosynthesis in the important red yeast Rhodotorula glutinis QYH-2023 with anti-inflammatory effects.
    He Q; Bai S; Chen C; Yang X; Li Z; Sun S; Qu X; Yang X; Pan J; Liu W; Hou C; Deng Y
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):132103. PubMed ID: 38719011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.