BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36909386)

  • 1. Enhancing the accumulation of linoleic acid and α-linolenic acid through the pre-harvest ethylene treatment in
    Li H; Ma X; Wang W; Zhang J; Liu Y; Yuan D
    Front Plant Sci; 2023; 14():1080946. PubMed ID: 36909386
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera.
    Zhang F; Li Z; Zhou J; Gu Y; Tan X
    BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene-regulated immature fruit abscission is associated with higher expression of
    Hu X; Yang M; Gong S; Li H; Zhang J; Sajjad M; Ma X; Yuan D
    R Soc Open Sci; 2021 Jun; 8(6):202340. PubMed ID: 34109038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Oil Content and Fatty Acid Profile of Ten New Camellia oleifera Cultivars.
    Yang C; Liu X; Chen Z; Lin Y; Wang S
    J Lipids; 2016; 2016():3982486. PubMed ID: 26942012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island.
    Ye Z; Wu Y; Ul Haq Muhammad Z; Yan W; Yu J; Zhang J; Yao G; Hu X
    PLoS One; 2020; 15(2):e0226888. PubMed ID: 32027663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Transcriptomic and Metabolomic Analysis Reveal the Dynamic Process of Bama Hemp Seed Development and the Accumulation Mechanism of α-Linolenic Acid and Linoleic Acid.
    Nie J; Ma W; Ma X; Zhu D; Li X; Wang C; Xu G; Chen C; Luo D; Xie S; Hu G; Chen P
    J Agric Food Chem; 2024 May; 72(19):10862-10878. PubMed ID: 38712687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (
    Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition.
    Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285
    [No Abstract]   [Full Text] [Related]  

  • 9. Sugar Metabolism and Transcriptome Analysis Reveal Key Sugar Transporters during
    He Y; Chen R; Yang Y; Liang G; Zhang H; Deng X; Xi R
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055010
    [No Abstract]   [Full Text] [Related]  

  • 10. Global Transcriptome and Correlation Analysis Reveal Cultivar-Specific Molecular Signatures Associated with Fruit Development and Fatty Acid Determination in
    Peng S; Lu J; Zhang Z; Ma L; Liu C; Chen Y
    Int J Genomics; 2020; 2020():6162802. PubMed ID: 32953873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Grain oil quality formation and metabolism-related genes difference expression of
    Shi SY; Ding XN; Wang ZC; Guo XF; Zhang GN; Hu YH; Shi GA
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(11):2987-2996. PubMed ID: 36384833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.
    Xia EH; Jiang JJ; Huang H; Zhang LP; Zhang HB; Gao LZ
    PLoS One; 2014; 9(8):e104150. PubMed ID: 25136805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera.
    Ye Z; Yu J; Yan W; Zhang J; Yang D; Yao G; Liu Z; Wu Y; Hou X
    Hortic Res; 2021 Jul; 8(1):157. PubMed ID: 34193845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-Length Transcriptome from
    Gong W; Song Q; Ji K; Gong S; Wang L; Chen L; Zhang J; Yuan D
    J Agric Food Chem; 2020 Dec; 68(49):14670-14683. PubMed ID: 33249832
    [No Abstract]   [Full Text] [Related]  

  • 15. Analysis of Camellia oleifera transcriptome reveals key pathways and hub genes involved during different photoperiods.
    Yan J; He J; Li J; Ren S; Wang Y; Zhou J; Tan X
    BMC Plant Biol; 2022 Sep; 22(1):435. PubMed ID: 36089577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Characterization of
    Wang Y; Chen JY; Xu X; Cheng J; Zheng L; Huang J; Li DW
    Plant Dis; 2020 Feb; 104(2):474-482. PubMed ID: 31790642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo transcriptome assembly of the cotyledon of Camellia oleifera for discovery of genes regulating seed germination.
    Long W; Yao X; Wang K; Sheng Y; Lv L
    BMC Plant Biol; 2022 May; 22(1):265. PubMed ID: 35643426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic and metabolomic insights on the molecular mechanisms of flower buds in responses to cold stress in two
    Wang YJ; Wu LL; Sun MH; Li Z; Tan XF; Li JA
    Front Plant Sci; 2023; 14():1126660. PubMed ID: 36968351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptomic analysis of high- and low-oil
    Wu B; Ruan C; Han P; Ruan D; Xiong C; Ding J; Liu S
    3 Biotech; 2019 Jul; 9(7):257. PubMed ID: 31192082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and cross-species transferability of unigene-derived microsatellite markers in an edible oil woody plant, Camellia oleifera (Theaceae).
    Jia BG; Lin Q; Feng YZ; Hu XY; Tan XF; Shao FG; Zhang L
    Genet Mol Res; 2015 Jun; 14(2):6906-16. PubMed ID: 26125898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.