These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Pipkin ME Immunol Rev; 2021 Mar; 300(1):100-124. PubMed ID: 33682165 [TBL] [Abstract][Full Text] [Related]
9. Regulation of 3D genome organization during T cell activation. Wang B; Bian Q FEBS J; 2024 Jun; ():. PubMed ID: 38944686 [TBL] [Abstract][Full Text] [Related]
10. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages. Baumann FM; Yuzefpolskiy Y; Sarkar S; Kalia V PLoS One; 2016; 11(9):e0162674. PubMed ID: 27627450 [TBL] [Abstract][Full Text] [Related]
11. SATB1 regulates 3D genome architecture in T cells by constraining chromatin interactions surrounding CTCF-binding sites. Wang B; Ji L; Bian Q Cell Rep; 2023 Apr; 42(4):112323. PubMed ID: 37000624 [TBL] [Abstract][Full Text] [Related]
12. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling. Billingsley JM; Rajakumar PA; Connole MA; Salisch NC; Adnan S; Kuzmichev YV; Hong HS; Reeves RK; Kang HJ; Li W; Li Q; Haase AT; Johnson RP PLoS Pathog; 2015 Mar; 11(3):e1004740. PubMed ID: 25768938 [TBL] [Abstract][Full Text] [Related]
13. Cutting edge: persistently open chromatin at effector gene loci in resting memory CD8+ T cells independent of transcriptional status. Zediak VP; Johnnidis JB; Wherry EJ; Berger SL J Immunol; 2011 Mar; 186(5):2705-9. PubMed ID: 21278341 [TBL] [Abstract][Full Text] [Related]
14. The interface between transcriptional and epigenetic control of effector and memory CD8⁺ T-cell differentiation. Gray SM; Kaech SM; Staron MM Immunol Rev; 2014 Sep; 261(1):157-68. PubMed ID: 25123283 [TBL] [Abstract][Full Text] [Related]
15. CTCF mediates CD8+ effector differentiation through dynamic redistribution and genomic reorganization. Liu J; Zhu S; Hu W; Zhao X; Shan Q; Peng W; Xue HH J Exp Med; 2023 Apr; 220(4):. PubMed ID: 36752796 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide DNA methylation analysis of senescence in repetitively infected memory cytotoxic T lymphocytes. Shosaku J Immunology; 2018 Feb; 153(2):253-267. PubMed ID: 28898397 [TBL] [Abstract][Full Text] [Related]
17. Dynamic regulation of permissive histone modifications and GATA3 binding underpin acquisition of granzyme A expression by virus-specific CD8(+) T cells. Nguyen ML; Hatton L; Li J; Olshansky M; Kelso A; Russ BE; Turner SJ Eur J Immunol; 2016 Feb; 46(2):307-18. PubMed ID: 26519105 [TBL] [Abstract][Full Text] [Related]
18. Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). Araki Y; Fann M; Wersto R; Weng NP J Immunol; 2008 Jun; 180(12):8102-8. PubMed ID: 18523274 [TBL] [Abstract][Full Text] [Related]
19. Cutting Edge: Chromatin Accessibility Programs CD8 T Cell Memory. Scharer CD; Bally AP; Gandham B; Boss JM J Immunol; 2017 Mar; 198(6):2238-2243. PubMed ID: 28179496 [TBL] [Abstract][Full Text] [Related]