These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 36910225)
1. Impact of particle flux on the vertical distribution and diversity of size-fractionated prokaryotic communities in two East Antarctic polynyas. Puigcorbé V; Ruiz-González C; Masqué P; Gasol JM Front Microbiol; 2023; 14():1078469. PubMed ID: 36910225 [TBL] [Abstract][Full Text] [Related]
2. Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Ruiz-González C; Mestre M; Estrada M; Sebastián M; Salazar G; Agustí S; Moreno-Ostos E; Reche I; Álvarez-Salgado XA; Morán XAG; Duarte CM; Sala MM; Gasol JM Mol Ecol; 2020 May; 29(10):1820-1838. PubMed ID: 32323882 [TBL] [Abstract][Full Text] [Related]
3. Sinking particles promote vertical connectivity in the ocean microbiome. Mestre M; Ruiz-González C; Logares R; Duarte CM; Gasol JM; Sala MM Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6799-E6807. PubMed ID: 29967136 [TBL] [Abstract][Full Text] [Related]
4. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Delmont TO; Hammar KM; Ducklow HW; Yager PL; Post AF Front Microbiol; 2014; 5():646. PubMed ID: 25566197 [TBL] [Abstract][Full Text] [Related]
5. Sampling Device-Dependence of Prokaryotic Community Structure on Marine Particles: Higher Diversity Recovered by Puigcorbé V; Ruiz-González C; Masqué P; Gasol JM Front Microbiol; 2020; 11():1645. PubMed ID: 32760385 [TBL] [Abstract][Full Text] [Related]
6. Unveiling abundance and distribution of planktonic Bacteria and Archaea in a polynya in Amundsen Sea, Antarctica. Kim JG; Park SJ; Quan ZX; Jung MY; Cha IT; Kim SJ; Kim KH; Yang EJ; Kim YN; Lee SH; Rhee SK Environ Microbiol; 2014 Jun; 16(6):1566-78. PubMed ID: 24112809 [TBL] [Abstract][Full Text] [Related]
7. Bacteria and Archaea Regulate Particulate Organic Matter Export in Suspended and Sinking Marine Particle Fractions. Dithugoe CD; Bezuidt OKI; Cavan EL; Froneman WP; Thomalla SJ; Makhalanyane TP mSphere; 2023 Jun; 8(3):e0042022. PubMed ID: 37093039 [TBL] [Abstract][Full Text] [Related]
8. Prokaryotic Response to Phytodetritus-Derived Organic Material in Epi- and Mesopelagic Antarctic Waters. Manna V; Malfatti F; Banchi E; Cerino F; De Pascale F; Franzo A; Schiavon R; Vezzi A; Del Negro P; Celussi M Front Microbiol; 2020; 11():1242. PubMed ID: 32582131 [TBL] [Abstract][Full Text] [Related]
9. Projections of winter polynyas and their biophysical impacts in the Ross Sea Antarctica. DuVivier AK; Molina MJ; Deppenmeier AL; Holland MM; Landrum L; Krumhardt K; Jenouvrier S Clim Dyn; 2024; 62(2):989-1012. PubMed ID: 39328888 [TBL] [Abstract][Full Text] [Related]
10. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. Baumas CMJ; Le Moigne FAC; Garel M; Bhairy N; Guasco S; Riou V; Armougom F; Grossart HP; Tamburini C ISME J; 2021 Jun; 15(6):1695-1708. PubMed ID: 33452475 [TBL] [Abstract][Full Text] [Related]
11. Functional vertical connectivity of microbial communities in the ocean. Chen S; Xie ZX; Yan KQ; Chen JW; Li DX; Wu PF; Peng L; Lin L; Dong CM; Zhao Z; Fan GY; Liu SQ; Herndl GJ; Wang DZ Sci Adv; 2024 May; 10(21):eadj8184. PubMed ID: 38781332 [TBL] [Abstract][Full Text] [Related]
12. Genomic and metatranscriptomic analyses of carbon remineralization in an Antarctic polynya. Kim SJ; Kim JG; Lee SH; Park SJ; Gwak JH; Jung MY; Chung WH; Yang EJ; Park J; Jung J; Hahn Y; Cho JC; Madsen EL; Rodriguez-Valera F; Hyun JH; Rhee SK Microbiome; 2019 Feb; 7(1):29. PubMed ID: 30786927 [TBL] [Abstract][Full Text] [Related]
13. Bio-physical characterisation of polynyas as a key foraging habitat for juvenile male southern elephant seals (Mirounga leonina) in Prydz Bay, East Antarctica. Malpress V; Bestley S; Corney S; Welsford D; Labrousse S; Sumner M; Hindell M PLoS One; 2017; 12(9):e0184536. PubMed ID: 28902905 [TBL] [Abstract][Full Text] [Related]
14. Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles. Comstock J; Henderson LC; Close HG; Liu S; Vergin K; Worden AZ; Wittmers F; Halewood E; Giovannoni S; Carlson CA ISME Commun; 2024 Jan; 4(1):ycae090. PubMed ID: 39165394 [TBL] [Abstract][Full Text] [Related]
15. Prokaryotic niche partitioning between suspended and sinking marine particles. Duret MT; Lampitt RS; Lam P Environ Microbiol Rep; 2019 Jun; 11(3):386-400. PubMed ID: 30246414 [TBL] [Abstract][Full Text] [Related]
16. A dataset of the daily edge of each polynya in the Antarctic. Lin Y; Nakayama Y; Liang K; Huang Y; Chen D; Yang Q Sci Data; 2024 Sep; 11(1):1006. PubMed ID: 39289369 [TBL] [Abstract][Full Text] [Related]
18. Patchy Blooms and Multifarious Ecotypes of Labyrinthulomycetes Protists and Their Implication in Vertical Carbon Export in the Pelagic Eastern Indian Ocean. Xie N; Bai M; Liu L; Li J; He Y; Collier JL; Hunt DE; Johnson ZI; Jiao N; Wang G Microbiol Spectr; 2022 Jun; 10(3):e0014422. PubMed ID: 35502912 [TBL] [Abstract][Full Text] [Related]
19. Environmental Drivers of Free-Living vs. Particle-Attached Bacterial Community Composition in the Mauritania Upwelling System. Bachmann J; Heimbach T; Hassenrück C; Kopprio GA; Iversen MH; Grossart HP; Gärdes A Front Microbiol; 2018; 9():2836. PubMed ID: 30532746 [TBL] [Abstract][Full Text] [Related]
20. Modelling Free-Living and Particle-Associated Bacterial Assemblages across the Deep and Hypoxic Lower St. Lawrence Estuary. Cui TT; Dawson TJ; McLatchie S; Dunn K; Bielawski J; Walsh DA mSphere; 2020 May; 5(3):. PubMed ID: 32434843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]