These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36910274)

  • 1. Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting.
    Zhong J; Liang M; Tang Q; Ai Y
    Mater Today Bio; 2023 Apr; 19():100594. PubMed ID: 36910274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DUPLETS: Deformability-Assisted Dual-Particle Encapsulation Via Electrically Activated Sorting.
    Zhong J; Liang M; Ai Y
    Small Methods; 2023 Sep; 7(9):e2300089. PubMed ID: 37246250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform.
    Navi M; Abbasi N; Jeyhani M; Gnyawali V; Tsai SSH
    Lab Chip; 2018 Nov; 18(22):3361-3370. PubMed ID: 30375625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells.
    Chabert M; Viovy JL
    Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3191-6. PubMed ID: 18316742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deterministic droplet coding
    Zhang P; Wang W; Fu H; Rich J; Su X; Bachman H; Xia J; Zhang J; Zhao S; Zhou J; Huang TJ
    Lab Chip; 2020 Nov; 20(23):4466-4473. PubMed ID: 33103674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet sorting based on the number of encapsulated particles using a solenoid valve.
    Cao Z; Chen F; Bao N; He H; Xu P; Jana S; Jung S; Lian H; Lu C
    Lab Chip; 2013 Jan; 13(1):171-8. PubMed ID: 23160342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput sorting of nanoliter droplets enabled by a sequentially addressable dielectrophoretic array.
    Loo MH; Nakagawa Y; Kim SH; Isozaki A; Goda K
    Electrophoresis; 2022 Feb; 43(3):477-486. PubMed ID: 34599837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detachable Acoustophoretic System for Fluorescence-Activated Sorting at the Single-Droplet Level.
    Li P; Ma Z; Zhou Y; Collins DJ; Wang Z; Ai Y
    Anal Chem; 2019 Aug; 91(15):9970-9977. PubMed ID: 31179691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Emulsion Picoreactors for High-Throughput Single-Cell Encapsulation and Phenotyping via FACS.
    Brower KK; Khariton M; Suzuki PH; Still C; Kim G; Calhoun SGK; Qi LS; Wang B; Fordyce PM
    Anal Chem; 2020 Oct; 92(19):13262-13270. PubMed ID: 32900183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetophoretic Sorting of Single Cell-Containing Microdroplets.
    Jo Y; Shen F; Hahn YK; Park JH; Park JK
    Micromachines (Basel); 2016 Mar; 7(4):. PubMed ID: 30407429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system.
    Yuan H; Tu R; Tong X; Lin Y; Zhang Y; Wang Q
    J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35259275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic droplet-based co-encapsulation and pairing of microparticles via active sorting and downstream merging.
    Chung MT; Núñez D; Cai D; Kurabayashi K
    Lab Chip; 2017 Oct; 17(21):3664-3671. PubMed ID: 28967663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall.
    Zhang Y; Lin Y; Hong X; Di C; Xin Y; Wang X; Qi S; Liu BF; Zhang Z; Du W
    Anal Bioanal Chem; 2023 Sep; 415(22):5311-5322. PubMed ID: 37392212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorting by interfacial tension (SIFT): Label-free enzyme sorting using droplet microfluidics.
    Horvath DG; Braza S; Moore T; Pan CW; Zhu L; Pak OS; Abbyad P
    Anal Chim Acta; 2019 Dec; 1089():108-114. PubMed ID: 31627807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting.
    Wu L; Chen P; Dong Y; Feng X; Liu BF
    Biomed Microdevices; 2013 Jun; 15(3):553-60. PubMed ID: 23404263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity.
    Baret JC; Miller OJ; Taly V; Ryckelynck M; El-Harrak A; Frenz L; Rick C; Samuels ML; Hutchison JB; Agresti JJ; Link DR; Weitz DA; Griffiths AD
    Lab Chip; 2009 Jul; 9(13):1850-8. PubMed ID: 19532959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and construction of a microfluidics workstation for high-throughput multi-wavelength fluorescence and transmittance activated droplet analysis and sorting.
    Panwar J; Autour A; Merten CA
    Nat Protoc; 2023 Apr; 18(4):1090-1136. PubMed ID: 36707723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.