These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 36910467)

  • 21. Chemical-Free Recycling of Cathode Material and Aluminum Foil from Waste Lithium-Ion Batteries by Combining Plasma and Ultrasonic Technology.
    Chen Q; Guo Y; Lai X; Han X; Liu X; Lu L; Ouyang M; Zheng Y
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31076-31084. PubMed ID: 38848221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Recycling of Spent Lithium-Ion Batteries: Crucial Flotation for the Separation of Cathode and Anode Materials.
    Ma X; Ge P; Wang L; Sun W; Bu Y; Sun M; Yang Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A sustainable approach to cathode delamination using a green solvent.
    Buken O; Mancini K; Sarkar A
    RSC Adv; 2021 Aug; 11(44):27356-27368. PubMed ID: 35480693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separation of cathode particles and aluminum current foil in lithium-ion battery by high-voltage pulsed discharge Part II: Prospective life cycle assessment based on experimental data.
    Kikuchi Y; Suwa I; Heiho A; Dou Y; Lim S; Namihira T; Mochidzuki K; Koita T; Tokoro C
    Waste Manag; 2021 Aug; 132():86-95. PubMed ID: 34325331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis.
    Yu S; Xiong J; Wu D; Lü X; Yao Z; Xu S; Tang J
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40205-40209. PubMed ID: 32661975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De-agglomeration of cathode composites for direct recycling of Li-ion batteries.
    Zhan R; Payne T; Leftwich T; Perrine K; Pan L
    Waste Manag; 2020 Mar; 105():39-48. PubMed ID: 32018141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of polyvinylidene fluoride binder and other organics for enhancing the leaching efficiency of lithium and cobalt from black mass.
    Golmohammadzadeh R; Dimachki Z; Bryant W; Zhang J; Biniaz P; M Banaszak Holl M; Pozo-Gonzalo C; Chakraborty Banerjee P
    J Environ Manage; 2023 Oct; 343():118205. PubMed ID: 37235989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.
    Zhang W; Xu C; He W; Li G; Huang J
    Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas.
    Jin X; Zhang P; Teng L; Rohani S; He M; Meng F; Liu Q; Liu W
    Waste Manag; 2023 Jun; 165():189-198. PubMed ID: 37149393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incineration of EV Lithium-ion batteries as a pretreatment for recycling - Determination of the potential formation of hazardous by-products and effects on metal compounds.
    Lombardo G; Ebin B; St J Foreman MR; Steenari BM; Petranikova M
    J Hazard Mater; 2020 Jul; 393():122372. PubMed ID: 32208329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments.
    Wu Z; Zhu H; Bi H; He P; Gao S
    Waste Manag Res; 2021 Apr; 39(4):607-619. PubMed ID: 33200691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainable recycling of LiCoO
    Guo H; Min Z; Hao Y; Wang X; Fan J; Shi P; Min Y; Xu Q
    Sci Total Environ; 2021 Mar; 759():143478. PubMed ID: 33213911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solvent extraction for recycling of spent lithium-ion batteries.
    Lei S; Sun W; Yang Y
    J Hazard Mater; 2022 Feb; 424(Pt D):127654. PubMed ID: 34772557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Comprehensive Review on Reductive Recycling of Cathode Materials of Spent Lithium-Ion Batteries.
    Li Y; Cai J; Wang J; Xu S; Li Y; He W; Wang Z; Yang S; Yan X
    Chemistry; 2024 Jun; 30(35):e202400566. PubMed ID: 38642049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cathode active materials using rare metals recovered from waste lithium-ion batteries: A review.
    Abe Y; Watanabe R; Yodose T; Kumagai S
    Heliyon; 2024 Apr; 10(7):e28145. PubMed ID: 38560163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyrolysis and physical separation for the recovery of spent LiFePO
    Zhong X; Liu W; Han J; Jiao F; Qin W; Liu T; Zhao C
    Waste Manag; 2019 Apr; 89():83-93. PubMed ID: 31079762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in pretreating technology for recycling valuable metals from spent lithium-ion batteries.
    Zhang G; Yuan X; He Y; Wang H; Zhang T; Xie W
    J Hazard Mater; 2021 Mar; 406():124332. PubMed ID: 33229267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reaction-passivation mechanism driven materials separation for recycling of spent lithium-ion batteries.
    Chen Z; Feng R; Wang W; Tu S; Hu Y; Wang X; Zhan R; Wang J; Zhao J; Liu S; Fu L; Sun Y
    Nat Commun; 2023 Aug; 14(1):4648. PubMed ID: 37532688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding.
    Wang H; Liu J; Bai X; Wang S; Yang D; Fu Y; He Y
    Waste Manag; 2019 May; 91():89-98. PubMed ID: 31203946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.