These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36910677)

  • 21. Knee Arthrodesis Affects Gait Kinematics More in the Ankle Than in the Hip Joint.
    Wagener N; Böhle S; Kirschberg J; Rohe S; Heinecke M; Di Fazio P; Matziolis G; Röhner E
    Medicina (Kaunas); 2022 May; 58(6):. PubMed ID: 35743959
    [No Abstract]   [Full Text] [Related]  

  • 22. An empirical evaluation of kernels for time series.
    Badiane M; Cunningham P
    Artif Intell Rev; 2022; 55(3):1803-1820. PubMed ID: 35370341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asymmetric Gait Analysis Using a DTW Algorithm with Combined Gyroscope and Pressure Sensor.
    Jeong YK; Baek KR
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization.
    Choi JH; Fahrig R; Keil A; Besier TF; Pal S; McWalter EJ; Beaupré GS; Maier A
    Med Phys; 2013 Sep; 40(9):091905. PubMed ID: 24007156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gait Analysis Reveals that Total Hip Arthroplasty Increases Power Production in the Hip During Level Walking and Stair Climbing.
    Queen RM; Campbell JC; Schmitt D
    Clin Orthop Relat Res; 2019 Aug; 477(8):1839-1847. PubMed ID: 31135537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regression Algorithm of Bone Age Estimation of Knee-joint Based on Principal Component Analysis and Support Vector Machine.
    Lei YY; Shen YS; Wang YH; Zhao H
    Fa Yi Xue Za Zhi; 2019 Apr; 35(2):194-199. PubMed ID: 31135114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification of genomic signals using dynamic time warping.
    Skutkova H; Vitek M; Babula P; Kizek R; Provaznik I
    BMC Bioinformatics; 2013; 14 Suppl 10(Suppl 10):S1. PubMed ID: 24267034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm.
    Ota M; Tateuchi H; Hashiguchi T; Ichihashi N
    Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
    Rogozinski BM; Davids JR; Davis RB; Jameson GG; Blackhurst DW
    J Bone Joint Surg Am; 2009 Oct; 91(10):2440-7. PubMed ID: 19797580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic Time Warping Identifies Functionally Distinct fMRI Resting State Cortical Networks Specific to VTA and SNc: A Proof of Concept.
    Philips RT; Torrisi SJ; Gorka AX; Grillon C; Ernst M
    Cereb Cortex; 2022 Mar; 32(6):1142-1151. PubMed ID: 34448816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-age-related gait kinematics and kinetics in the elderly.
    Liang Y; Xu T; Qi S; Cao X; Yeung EHK; Hu Y
    BMC Musculoskelet Disord; 2022 Jun; 23(1):623. PubMed ID: 35768797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lower Body Joint Angle Prediction Using Machine Learning and Applied Biomechanical Inverse Dynamics.
    Choffin Z; Jeong N; Callihan M; Sazonov E; Jeong S
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control.
    Farah JD; Baddour N; Lemaire ED
    J Neuroeng Rehabil; 2019 Feb; 16(1):22. PubMed ID: 30709363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous validation of wearable motion capture system for lower body applications: over single plane range of motion (ROM) and gait activities.
    Mihcin S
    Biomed Tech (Berl); 2022 Jun; 67(3):185-199. PubMed ID: 35575784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Method of Classification in Knee Osteoarthritis: Machine Learning Application Versus Logistic Regression Model.
    Yang JH; Park JH; Jang SH; Cho J
    Ann Rehabil Med; 2020 Dec; 44(6):415-427. PubMed ID: 33440090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age.
    Strath SJ; Kate RJ; Keenan KG; Welch WA; Swartz AM
    Physiol Meas; 2015 Nov; 36(11):2335-51. PubMed ID: 26449155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised machine learning.
    Huber M; Kurz C; Leidl R
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):3. PubMed ID: 30621670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stair ascent comparison of lower limb kinematics with differing time normalization techniques.
    Weiske F; Böhme M; Jäkel J; Zentner J; Witt M
    J Biomech; 2021 Apr; 119():110316. PubMed ID: 33631663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Consultation length and no-show prediction for improving appointment scheduling efficiency at a cardiology clinic: A data analytics approach.
    Srinivas S; Salah H
    Int J Med Inform; 2021 Jan; 145():104290. PubMed ID: 33099184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional biomechanical gait characteristics at baseline are associated with progression to total knee arthroplasty.
    Hatfield GL; Stanish WD; Hubley-Kozey CL
    Arthritis Care Res (Hoboken); 2015 Jul; 67(7):1004-14. PubMed ID: 25708360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.