These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Learning the Synthesizability of Dynamic Texture Samples. Yang F; Xia GS; Dai D; Zhang L IEEE Trans Image Process; 2018 Dec; ():. PubMed ID: 30571632 [TBL] [Abstract][Full Text] [Related]
6. Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Bartel CJ; Millican SL; Deml AM; Rumptz JR; Tumas W; Weimer AW; Lany S; Stevanović V; Musgrave CB; Holder AM Nat Commun; 2018 Oct; 9(1):4168. PubMed ID: 30301890 [TBL] [Abstract][Full Text] [Related]
8. RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software. Liu CH; Korablyov M; Jastrzębski S; Włodarczyk-Pruszyński P; Bengio Y; Segler M J Chem Inf Model; 2022 May; 62(10):2293-2300. PubMed ID: 35452226 [TBL] [Abstract][Full Text] [Related]
9. Creating Machine Learning-Driven Material Recipes Based on Crystal Structure. Takahashi K; Takahashi L J Phys Chem Lett; 2019 Jan; 10(2):283-288. PubMed ID: 30609373 [TBL] [Abstract][Full Text] [Related]
10. DeepXRD, a Deep Learning Model for Predicting XRD spectrum from Material Composition. Dong R; Zhao Y; Song Y; Fu N; Omee SS; Dey S; Li Q; Wei L; Hu J ACS Appl Mater Interfaces; 2022 Sep; 14(35):40102-40115. PubMed ID: 36018289 [TBL] [Abstract][Full Text] [Related]
11. Data mining approaches to high-throughput crystal structure and compound prediction. Hautier G Top Curr Chem; 2014; 345():139-79. PubMed ID: 24287952 [TBL] [Abstract][Full Text] [Related]
12. Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction. Na GS; Jang S; Lee YL; Chang H J Phys Chem A; 2020 Dec; 124(50):10616-10623. PubMed ID: 33280389 [TBL] [Abstract][Full Text] [Related]
13. A Machine-Learning-Assisted Crystalline Structure Prediction Framework To Accelerate Materials Discovery. An R; Xie C; Chu D; Li F; Pan S; Yang Z ACS Appl Mater Interfaces; 2024 Jul; 16(28):36658-36666. PubMed ID: 38976617 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of Synthetic Musks: A Theoretical Study Based on the Relationships between Structure and Properties at Molecular Scale. Li X; Yang H; Zhao Y; Pu Q; Xu T; Li R; Li Y Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769089 [TBL] [Abstract][Full Text] [Related]
15. Discovery of novel materials through machine learning. Akinpelu A; Bhullar M; Yao Y J Phys Condens Matter; 2024 Aug; 36(45):. PubMed ID: 39106893 [TBL] [Abstract][Full Text] [Related]
16. Inorganic Crystal Structure Prototype Database Based on Unsupervised Learning of Local Atomic Environments. Luo S; Xing B; Faizan M; Xie J; Zhou K; Zhao R; Li T; Wang X; Fu Y; He X; Lv J; Zhang L J Phys Chem A; 2022 Jul; 126(26):4300-4312. PubMed ID: 35732014 [TBL] [Abstract][Full Text] [Related]
17. QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments. Zwolak JP; Kalantre SS; Wu X; Ragole S; Taylor JM PLoS One; 2018; 13(10):e0205844. PubMed ID: 30332463 [TBL] [Abstract][Full Text] [Related]
18. Composition Based Oxidation State Prediction of Materials Using Deep Learning Language Models. Fu N; Hu J; Feng Y; Morrison G; Loye HZ; Hu J Adv Sci (Weinh); 2023 Oct; 10(28):e2301011. PubMed ID: 37551059 [TBL] [Abstract][Full Text] [Related]