These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36910925)

  • 1. Predicting Synthesizability using Machine Learning on Databases of Existing Inorganic Materials.
    Zhu R; Tian SIP; Ren Z; Li J; Buonassisi T; Hippalgaonkar K
    ACS Omega; 2023 Mar; 8(9):8210-8218. PubMed ID: 36910925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Based Synthesizability Prediction of Crystals Using Partially Supervised Learning.
    Jang J; Gu GH; Noh J; Kim J; Jung Y
    J Am Chem Soc; 2020 Nov; 142(44):18836-18843. PubMed ID: 33104335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Learning Framework in Prediction and Validation of Gibbs Free Energy for Inorganic Crystalline Solids.
    Yoon J; Choi E; Min K
    J Phys Chem A; 2021 Nov; 125(46):10103-10110. PubMed ID: 34767369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network analysis of synthesizable materials discovery.
    Aykol M; Hegde VI; Hung L; Suram S; Herring P; Wolverton C; Hummelshøj JS
    Nat Commun; 2019 May; 10(1):2018. PubMed ID: 31043603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning the Synthesizability of Dynamic Texture Samples.
    Yang F; Xia GS; Dai D; Zhang L
    IEEE Trans Image Process; 2018 Dec; ():. PubMed ID: 30571632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry.
    Bartel CJ; Millican SL; Deml AM; Rumptz JR; Tumas W; Weimer AW; Lany S; Stevanović V; Musgrave CB; Holder AM
    Nat Commun; 2018 Oct; 9(1):4168. PubMed ID: 30301890
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Lee AS; Elliott S; Harb H; Ward L; Foster I; Curtiss L; Assary RS
    J Chem Inf Model; 2024 Feb; 64(4):1277-1289. PubMed ID: 38359461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software.
    Liu CH; Korablyov M; Jastrzębski S; Włodarczyk-Pruszyński P; Bengio Y; Segler M
    J Chem Inf Model; 2022 May; 62(10):2293-2300. PubMed ID: 35452226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating Machine Learning-Driven Material Recipes Based on Crystal Structure.
    Takahashi K; Takahashi L
    J Phys Chem Lett; 2019 Jan; 10(2):283-288. PubMed ID: 30609373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepXRD, a Deep Learning Model for Predicting XRD spectrum from Material Composition.
    Dong R; Zhao Y; Song Y; Fu N; Omee SS; Dey S; Li Q; Wei L; Hu J
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40102-40115. PubMed ID: 36018289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data mining approaches to high-throughput crystal structure and compound prediction.
    Hautier G
    Top Curr Chem; 2014; 345():139-79. PubMed ID: 24287952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction.
    Na GS; Jang S; Lee YL; Chang H
    J Phys Chem A; 2020 Dec; 124(50):10616-10623. PubMed ID: 33280389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Machine-Learning-Assisted Crystalline Structure Prediction Framework To Accelerate Materials Discovery.
    An R; Xie C; Chu D; Li F; Pan S; Yang Z
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36658-36666. PubMed ID: 38976617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Synthetic Musks: A Theoretical Study Based on the Relationships between Structure and Properties at Molecular Scale.
    Li X; Yang H; Zhao Y; Pu Q; Xu T; Li R; Li Y
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of novel materials through machine learning.
    Akinpelu A; Bhullar M; Yao Y
    J Phys Condens Matter; 2024 Aug; 36(45):. PubMed ID: 39106893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic Crystal Structure Prototype Database Based on Unsupervised Learning of Local Atomic Environments.
    Luo S; Xing B; Faizan M; Xie J; Zhou K; Zhao R; Li T; Wang X; Fu Y; He X; Lv J; Zhang L
    J Phys Chem A; 2022 Jul; 126(26):4300-4312. PubMed ID: 35732014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments.
    Zwolak JP; Kalantre SS; Wu X; Ragole S; Taylor JM
    PLoS One; 2018; 13(10):e0205844. PubMed ID: 30332463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition Based Oxidation State Prediction of Materials Using Deep Learning Language Models.
    Fu N; Hu J; Feng Y; Morrison G; Loye HZ; Hu J
    Adv Sci (Weinh); 2023 Oct; 10(28):e2301011. PubMed ID: 37551059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain data augmentation enables machine learning of inorganic crystal geometry optimization.
    Dinic F; Wang Z; Neporozhnii I; Salim UB; Bajpai R; Rajiv N; Chavda V; Radhakrishnan V; Voznyy O
    Patterns (N Y); 2023 Feb; 4(2):100663. PubMed ID: 36873906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks.
    Kim E; Jensen Z; van Grootel A; Huang K; Staib M; Mysore S; Chang HS; Strubell E; McCallum A; Jegelka S; Olivetti E
    J Chem Inf Model; 2020 Mar; 60(3):1194-1201. PubMed ID: 31909619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.