These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 36911238)

  • 1. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals.
    Sharma P; Pandey A; Malviya R; Dey S; Karmakar S; Gayen D
    Front Genome Ed; 2023; 5():1094965. PubMed ID: 36911238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Improved Fruit, Vegetable, and Ornamental Crops Using the CRISPR/Cas9 Genome Editing Technique.
    Erpen-Dalla Corte L; M Mahmoud L; S Moraes T; Mou Z; W Grosser J; Dutt M
    Plants (Basel); 2019 Dec; 8(12):. PubMed ID: 31847196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.
    Karkute SG; Singh AK; Gupta OP; Singh PM; Singh B
    Front Plant Sci; 2017; 8():1635. PubMed ID: 28970844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing in fruit, ornamental, and industrial crops.
    Ramirez-Torres F; Ghogare R; Stowe E; Cerdá-Bennasser P; Lobato-Gómez M; Williamson-Benavides BA; Giron-Calva PS; Hewitt S; Christou P; Dhingra A
    Transgenic Res; 2021 Aug; 30(4):499-528. PubMed ID: 33825100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Editing Technology for Genetic Amelioration of Fruits and Vegetables for Alleviating Post-Harvest Loss.
    Kumari C; Sharma M; Kumar V; Sharma R; Kumar V; Sharma P; Kumar P; Irfan M
    Bioengineering (Basel); 2022 Apr; 9(4):. PubMed ID: 35447736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement.
    Naik BJ; Shimoga G; Kim SC; Manjulatha M; Subramanyam Reddy C; Palem RR; Kumar M; Kim SY; Lee SH
    Front Plant Sci; 2022; 13():843575. PubMed ID: 35463432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises.
    Rasheed A; Gill RA; Hassan MU; Mahmood A; Qari S; Zaman QU; Ilyas M; Aamer M; Batool M; Li H; Wu Z
    Curr Issues Mol Biol; 2021 Nov; 43(3):1950-1976. PubMed ID: 34889892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Editing the genome of common cereals (Rice and Wheat): techniques, applications, and industrial aspects.
    Das N; Ghosh Dhar D; Dhar P
    Mol Biol Rep; 2023 Jan; 50(1):739-747. PubMed ID: 36309609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals?
    Shipman EN; Yu J; Zhou J; Albornoz K; Beckles DM
    Hortic Res; 2021 Jan; 8(1):1. PubMed ID: 33384412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production.
    Manzoor S; Nabi SU; Rather TR; Gani G; Mir ZA; Wani AW; Ali S; Tyagi A; Manzar N
    Front Genome Ed; 2024; 6():1399051. PubMed ID: 38988891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges.
    Haque E; Taniguchi H; Hassan MM; Bhowmik P; Karim MR; Śmiech M; Zhao K; Rahman M; Islam T
    Front Plant Sci; 2018; 9():617. PubMed ID: 29868073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 System: A Potential Tool for Genetic Improvement in Floricultural Crops.
    Sirohi U; Kumar M; Sharma VR; Teotia S; Singh D; Chaudhary V; Priya ; Yadav MK
    Mol Biotechnol; 2022 Dec; 64(12):1303-1318. PubMed ID: 35751797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas genome editing to optimize pharmacologically active plant natural products.
    Dey A
    Pharmacol Res; 2021 Feb; 164():105359. PubMed ID: 33285226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR
    Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted modification of
    Nonaka S; Ito M; Ezura H
    Front Genome Ed; 2023; 5():1176125. PubMed ID: 37304010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progresses of CRISPR/Cas9 genome editing in forage crops.
    Ul Haq SI; Zheng D; Feng N; Jiang X; Qiao F; He JS; Qiu QS
    J Plant Physiol; 2022 Dec; 279():153860. PubMed ID: 36371870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.