These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36911246)

  • 1. Application of SDN Network Traffic Prediction Based on Speech Recognition in Educational Information Optimization Platform.
    Zheng S; Yang S
    Comput Intell Neurosci; 2022; 2022():5716698. PubMed ID: 36911246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fuzzy delay-bandwidth guaranteed routing algorithm for video conferencing services over SDN networks.
    Gong J; Rezaeipanah A
    Multimed Tools Appl; 2023 Jan; ():1-30. PubMed ID: 36712954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Termite inspired algorithm for traffic engineering in hybrid software defined networks.
    Ammal RA; Pc S; Ss V
    PeerJ Comput Sci; 2020; 6():e283. PubMed ID: 33816934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application-Aware SDN-Based Iterative Reconfigurable Routing Protocol for Internet of Things (IoT).
    Shafique A; Cao G; Aslam M; Asad M; Ye D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32580320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmenting Speech Quality Estimation in Software-Defined Networking Using Machine Learning Algorithms.
    Rozhon J; Rezac F; Jalowiczor J; Behan L
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34067574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving the multicommodity flow problem using an evolutionary routing algorithm in a computer network environment.
    Farrugia N; Briffa JA; Buttigieg V
    PLoS One; 2023; 18(4):e0278317. PubMed ID: 37075013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SACFIR: SDN-Based Application-Aware Centralized Adaptive Flow Iterative Reconfiguring Routing Protocol for WSNs.
    Aslam M; Hu X; Wang F
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29236031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A GRU-based traffic situation prediction method in multi-domain software defined network.
    Sun W; Guan S
    PeerJ Comput Sci; 2022; 8():e1011. PubMed ID: 35875644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control Plane Optimisation for an SDN-Based WBAN Framework to Support Healthcare Applications.
    Hasan K; Ahmed K; Biswas K; Islam MS; Kayes ASM; Islam SMR
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deployment of routing protocols in distributed control plane of SDN.
    Jingjing Z; Di C; Weiming W; Rong J; Xiaochun W
    ScientificWorldJournal; 2014; 2014():918536. PubMed ID: 25250395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Environmentally Sustainable Software-Defined Networking Data Dissemination Method for Mixed Traffic Flows in RSU Clouds with Energy Restriction.
    Li H; Ou D; Ji Y
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Load Balancing of Software-Defined Networking Based on Genetic-Ant Colony Optimization.
    Xue H; Kim KT; Youn HY
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A source-controlled data center network model.
    Yu Y; Liang M; Wang Z
    PLoS One; 2017; 12(3):e0173442. PubMed ID: 28328925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TITAN: Combining a bidirectional forwarding graph and GCN to detect saturation attack targeted at SDN.
    Ran L; Cui Y; Zhao J; Yang H
    PLoS One; 2024; 19(4):e0299846. PubMed ID: 38669264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Temporal Deep Q Learning for Optimal Load Balancing in Software-Defined Networks.
    Sharma A; Balasubramanian V; Kamruzzaman J
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SDN Controller Placement in IoT Networks: An Optimized Submodularity-Based Approach.
    Tran AK; Piran MJ; Pham C
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-granularity inference and estimations to network traffic for SDN.
    Jiang D; Huo L; Li Y
    PLoS One; 2018; 13(5):e0194302. PubMed ID: 29718913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SDN Control Strategy and QoS Optimization Simulation Performance Based on Improved Algorithm.
    Zhang B; Liu X
    Comput Intell Neurosci; 2022; 2022():7167957. PubMed ID: 35341183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on the control strategies of data flow transmission paths for MPTCP-based communication networks.
    Shu Z; Du HB; Zhu XY; Ruan SX; Li XR
    PeerJ Comput Sci; 2023; 9():e1716. PubMed ID: 38192487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.
    Chen H; Li L; Ren J; Wang Y; Zhao Y; Wang X; Wang S; Xu S
    PLoS One; 2015; 10(12):e0145437. PubMed ID: 26690571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.