BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36911532)

  • 1. 3D printing for customized carbon electrodes.
    Chang Y; Cao Q; Venton BJ
    Curr Opin Electrochem; 2023 Apr; 38():. PubMed ID: 36911532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress of conductive 3D-printed electrodes based upon polymers/carbon nanomaterials using a fused deposition modelling (FDM) method as emerging electrochemical sensing devices.
    Omar MH; Razak KA; Ab Wahab MN; Hamzah HH
    RSC Adv; 2021 Apr; 11(27):16557-16571. PubMed ID: 35479129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
    Tian P; Chen C; Hu J; Qi J; Wang Q; Chen JC; Cavanaugh J; Peng Y; Cheng MM
    Biomed Microdevices; 2017 Nov; 20(1):4. PubMed ID: 29170867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed Carbon Nanoelectrodes for In Vivo Neurotransmitter Sensing.
    Cao Q; Shin M; Lavrik NV; Venton BJ
    Nano Lett; 2020 Sep; 20(9):6831-6836. PubMed ID: 32813535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review.
    Shao Z; Chang Y; Venton BJ
    Anal Chim Acta; 2022 Aug; 1223():340165. PubMed ID: 35998998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penetrating glassy carbon neural electrode arrays for brain-machine interfaces.
    Chen B; Zhang B; Chen C; Hu J; Qi J; He T; Tian P; Zhang X; Ni G; Cheng MM
    Biomed Microdevices; 2020 Jun; 22(3):43. PubMed ID: 32504225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the coating of 3D-printed insulating substrates with conductive composites: a simple, cheap and versatile strategy to prepare customized high-performance electrochemical sensors.
    de Oliveira FM; Mendonça MZM; de Moraes NC; Petroni JM; Neves MM; de Melo EI; Lucca BG; Bezerra da Silva RA
    Anal Methods; 2022 Sep; 14(34):3345-3354. PubMed ID: 35979860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printed Carbon Electrodes for Neurotransmitter Detection.
    Yang C; Cao Q; Puthongkham P; Lee ST; Ganesana M; Lavrik NV; Venton BJ
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14255-14259. PubMed ID: 30207021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed graphene direct electron transfer enzyme biosensors.
    López Marzo AM; Mayorga-Martinez CC; Pumera M
    Biosens Bioelectron; 2020 Mar; 151():111980. PubMed ID: 31999587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printing pen versus desktop 3D-printers: Fabrication of carbon black/polylactic acid electrodes for single-drop detection of 2,4,6-trinitrotoluene.
    Cardoso RM; Rocha DP; Rocha RG; Stefano JS; Silva RAB; Richter EM; Muñoz RAA
    Anal Chim Acta; 2020 Oct; 1132():10-19. PubMed ID: 32980099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive-manufactured (3D-printed) electrochemical sensors: A critical review.
    Cardoso RM; Kalinke C; Rocha RG; Dos Santos PL; Rocha DP; Oliveira PR; Janegitz BC; Bonacin JA; Richter EM; Munoz RAA
    Anal Chim Acta; 2020 Jun; 1118():73-91. PubMed ID: 32418606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printed microfluidic devices with integrated versatile and reusable electrodes.
    Erkal JL; Selimovic A; Gross BC; Lockwood SY; Walton EL; McNamara S; Martin RS; Spence DM
    Lab Chip; 2014 Jun; 14(12):2023-32. PubMed ID: 24763966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing.
    Novotný F; Urbanová V; Plutnar J; Pumera M
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35371-35375. PubMed ID: 31525017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed electrochemical platform with multi-purpose carbon black sensing electrodes.
    Silva-Neto HA; Dias AA; Coltro WKT
    Mikrochim Acta; 2022 May; 189(6):235. PubMed ID: 35633399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing for Electrochemical Energy Applications.
    Browne MP; Redondo E; Pumera M
    Chem Rev; 2020 Mar; 120(5):2783-2810. PubMed ID: 32049499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage.
    Egorov V; Gulzar U; Zhang Y; Breen S; O'Dwyer C
    Adv Mater; 2020 Jul; 32(29):e2000556. PubMed ID: 32510631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation.
    Jewell E; Philip B; Greenwood P
    Biosensors (Basel); 2016 Jun; 6(3):. PubMed ID: 27355967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes.
    Bin Hamzah HH; Keattch O; Covill D; Patel BA
    Sci Rep; 2018 Jun; 8(1):9135. PubMed ID: 29904165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing in biotechnology-An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics.
    Heuer C; Preuß JA; Habib T; Enders A; Bahnemann J
    Eng Life Sci; 2022 Dec; 22(12):744-759. PubMed ID: 36514534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of Conductive Carbon Materials for 3D Printing: Materials, Technologies, Properties, and Applications.
    Zheng Y; Huang X; Chen J; Wu K; Wang J; Zhang X
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.