These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36911691)

  • 1. Identification and validation of immune and oxidative stress-related diagnostic markers for diabetic nephropathy by WGCNA and machine learning.
    Xu M; Zhou H; Hu P; Pan Y; Wang S; Liu L; Liu X
    Front Immunol; 2023; 14():1084531. PubMed ID: 36911691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and validation of immune and cuproptosis - related genes for diabetic nephropathy by WGCNA and machine learning.
    Chen Y; Liao L; Wang B; Wu Z
    Front Immunol; 2024; 15():1332279. PubMed ID: 38390317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of mitochondria-related genes as diagnostic biomarkers for diabetic nephropathy and their correlation with immune infiltration: New insights from bioinformatics analysis.
    Yan Q; Du Y; Huang F; Zhang Q; Zhan M; Wu J; Yan J; Zhang P; Lin H; Han L; Huang X
    Int Immunopharmacol; 2024 Dec; 142(Pt A):113114. PubMed ID: 39265357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of immune-associated biomarkers of diabetes nephropathy tubulointerstitial injury based on machine learning: a bioinformatics multi-chip integrated analysis.
    Wang L; Su J; Liu Z; Ding S; Li Y; Hou B; Hu Y; Dong Z; Tang J; Liu H; Liu W
    BioData Min; 2024 Jul; 17(1):20. PubMed ID: 38951833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis.
    Hu Y; Yu Y; Dong H; Jiang W
    PeerJ; 2023; 11():e15437. PubMed ID: 37250717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of endoplasmic reticulum stress-related biomarkers of diabetes nephropathy based on bioinformatics and machine learning.
    Su J; Peng J; Wang L; Xie H; Zhou Y; Chen H; Shi Y; Guo Y; Zheng Y; Guo Y; Dong Z; Zhang X; Liu H
    Front Endocrinol (Lausanne); 2023; 14():1206154. PubMed ID: 37745718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Verification of Diagnostic Biomarkers for Glomerular Injury in Diabetic Nephropathy Based on Machine Learning Algorithms.
    Han H; Chen Y; Yang H; Cheng W; Zhang S; Liu Y; Liu Q; Liu D; Yang G; Li K
    Front Endocrinol (Lausanne); 2022; 13():876960. PubMed ID: 35663304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine-learning algorithm-based prediction of a diagnostic model based on oxidative stress-related genes involved in immune infiltration in diabetic nephropathy patients.
    Zhu HM; Liu N; Sun DX; Luo L
    Front Immunol; 2023; 14():1202298. PubMed ID: 37554330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apoptosis and NETotic cell death affect diabetic nephropathy independently: An study integrative study encompassing bioinformatics, machine learning, and experimental validation.
    Cai H; Zeng Y; Luo D; Shao Y; Liu M; Wu J; Gao X; Zheng J; Zhou L; Liu F
    Genomics; 2024 Jul; 116(4):110879. PubMed ID: 38851464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning-based metabolism-related genes signature and immune infiltration landscape in diabetic nephropathy.
    Zhang H; Hu J; Zhu J; Li Q; Fang L
    Front Endocrinol (Lausanne); 2022; 13():1026938. PubMed ID: 36482994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of key immune-related genes and potential therapeutic drugs in diabetic nephropathy based on machine learning algorithms.
    Guo C; Wang W; Dong Y; Han Y
    BMC Med Genomics; 2024 Aug; 17(1):220. PubMed ID: 39187837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of ULK1 as a novel mitophagy-related gene in diabetic nephropathy.
    Yang YY; Gao ZX; Mao ZH; Liu DW; Liu ZS; Wu P
    Front Endocrinol (Lausanne); 2022; 13():1079465. PubMed ID: 36743936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GBP2 promotes M1 macrophage polarization by activating the notch1 signaling pathway in diabetic nephropathy.
    Li X; Liu J; Zeng M; Yang K; Zhang S; Liu Y; Yin X; Zhao C; Wang W; Xiao L
    Front Immunol; 2023; 14():1127612. PubMed ID: 37622120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel biomarkers related to oxidative stress and immunity in chronic kidney disease.
    Bai F; Wang C; Fan X; Fang L; Li L; Zhang X; Yu K; Liu L; Guo L; Yang X
    Heliyon; 2024 Mar; 10(6):e27754. PubMed ID: 38515668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm.
    Gholaminejad A; Fathalipour M; Roointan A
    BMC Nephrol; 2021 Jul; 22(1):245. PubMed ID: 34215202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of PDK4 as Hub Gene for Diabetic Nephropathy Using Co-Expression Network Analysis.
    Han Y; Jin L; Wang L; Wei L; Tu C
    Kidney Blood Press Res; 2023; 48(1):522-534. PubMed ID: 37385224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Analysis of Single-Cell RNA-Seq and Bulk RNA-Seq Combined with Multiple Machine Learning Identified a Novel Immune Signature in Diabetic Nephropathy.
    Peng YL; Zhang Y; Pang L; Dong YF; Li MY; Liao H; Li RS
    Diabetes Metab Syndr Obes; 2023; 16():1669-1684. PubMed ID: 37312900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Mechanism of Complement System in Diabetic Nephropathy via Bioinformatics Analysis.
    Xu B; Wang L; Zhan H; Zhao L; Wang Y; Shen M; Xu K; Li L; Luo X; Zhou S; Tang A; Liu G; Song L; Li Y
    J Diabetes Res; 2021; 2021():5546199. PubMed ID: 34124269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD8+T Cell-Related Gene Biomarkers in Macular Edema of Diabetic Retinopathy.
    Huang J; Zhou Q
    Front Endocrinol (Lausanne); 2022; 13():907396. PubMed ID: 35937822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative analysis identifies oxidative stress biomarkers in non-alcoholic fatty liver disease via machine learning and weighted gene co-expression network analysis.
    Wang H; Cheng W; Hu P; Ling T; Hu C; Chen Y; Zheng Y; Wang J; Zhao T; You Q
    Front Immunol; 2024; 15():1335112. PubMed ID: 38476236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.