These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36912)

  • 21. Active transport of alanine by thermostable membrane vesicles isolated from a thermophilic bacterium.
    Hirata H; Sone N; Yoshida M; Kagawa Y
    J Biochem; 1976 Jun; 79(6):1157-66. PubMed ID: 8439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Active electrogenic transport H+ in plasma membrane vesicles of cow parsnip phloem cells].
    Kalinin VA; Opritov VA; Shvets IM
    Biofizika; 1982; 27(1):58-61. PubMed ID: 6461361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ATP synthesis catalyzed by purified DCCD-sensitive ATPase incorporated into reconstituted purple membrane vesicles.
    Yoshida M; Sone N; Hirata H; Kagawa Y
    Biochem Biophys Res Commun; 1975 Dec; 67(4):1295-300. PubMed ID: 1031
    [No Abstract]   [Full Text] [Related]  

  • 24. Temperature-dependent relationship between K+ influx, Mg2+-ATPase activity, transmembrane potential and membrane lipid composition in mycoplasma.
    Le Grimellec C; Leblanc G
    Biochim Biophys Acta; 1980 Jul; 599(2):639-51. PubMed ID: 6105879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors affecting the reactivation of the oligomycin-sensitive adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during the re-energization of intact mitochondria from ischemic cardiac muscle.
    Rouslin W
    J Biol Chem; 1987 Mar; 262(8):3472-6. PubMed ID: 2950098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion-dependent generation of the electrochemical proton gradient delta muH+ in reconstituted plasma membrane vesicles from the yeast Metschnikowia reukaufii.
    Gläser HU; Höfer M
    Biochim Biophys Acta; 1987 Dec; 905(2):287-94. PubMed ID: 2825781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clathrin-coated vesicles contain an ATP-dependent proton pump.
    Forgac M; Cantley L; Wiedenmann B; Altstiel L; Branton D
    Proc Natl Acad Sci U S A; 1983 Mar; 80(5):1300-3. PubMed ID: 6131417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma].
    Babich LG; Fomin VP; Kosterin SA
    Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors that determine the plasma-membrane potential in bloodstream forms of Trypanosoma brucei.
    Nolan DP; Voorheis HP
    Eur J Biochem; 2000 Aug; 267(15):4615-23. PubMed ID: 10903493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical potential of protons in vesicles reconstituted from purified, proton-translocating adenosine triphosphatase.
    Sone N; Yoshida M; Hirata H; Okamoto H; Kagawa Y
    J Membr Biol; 1976 Dec; 30(2):121-34. PubMed ID: 13221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles.
    Schuldiner S; Fishkes H; Kanner BI
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of ionophores and dicyclohexylcarbodiimide on Mycoplasma gallisepticum adherence to erythrocytes.
    Banai M; Razin S; Schuldiner S; Zilberstein D; Kahane I; Bredt W
    Infect Immun; 1982 Oct; 38(1):189-94. PubMed ID: 7141689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy coupling to K+ transport in a marine bacterium.
    Sedgwick EG; MacLeod RA
    Can J Biochem; 1980 Oct; 58(10):1206-14. PubMed ID: 6450627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence that an ATPase and a protonmotive force function in the transport of acetylcholine into storage vesicles.
    Toll L; Howard BD
    J Biol Chem; 1980 Mar; 255(5):1787-9. PubMed ID: 6444415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence that an ATPase functions in the maintenance of the acidic pH of the hamster sperm acrosome.
    Working PK; Meizel S
    J Biol Chem; 1981 May; 256(10):4708-11. PubMed ID: 6453120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis.
    Tsai KJ; Yoon KP; Lynn AR
    J Bacteriol; 1992 Jan; 174(1):116-21. PubMed ID: 1530844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstituted Cl- pump protein: a novel ion(Cl-)-motive ATPase.
    Gerencser GA; Purushotham KR
    J Bioenerg Biomembr; 1996 Dec; 28(6):459-69. PubMed ID: 8953378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energized transport of potassium ions in the absence of valinomycin by cytochrome c oxidase-reconstituted vesicles.
    Singh AP; Nicholls P
    Biochim Biophys Acta; 1984 Nov; 777(2):194-200. PubMed ID: 6091755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitivity of valinomycin-based K(+)-selective micro-electrodes to inhibitors of K+ transport.
    Fitzgerald EM; Djamgoz MB
    J Neurosci Methods; 1995 Jul; 59(2):273-7. PubMed ID: 8531496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.