BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36912175)

  • 1. Establishing a Microfluidic Tumor Slice Culture Platform to Study Drug Response.
    Komar ZM; van Gent DC; Chakrabarty S
    Curr Protoc; 2023 Mar; 3(3):e693. PubMed ID: 36912175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Microfluidic Cancer-on-Chip Platform Predicts Drug Response Using Organotypic Tumor Slice Culture.
    Chakrabarty S; Quiros-Solano WF; Kuijten MMP; Haspels B; Mallya S; Lo CSY; Othman A; Silvestri C; van de Stolpe A; Gaio N; Odijk H; van de Ven M; de Ridder CMA; van Weerden WM; Jonkers J; Dekker R; Taneja N; Kanaar R; van Gent DC
    Cancer Res; 2022 Feb; 82(3):510-520. PubMed ID: 34872965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform.
    Lanz HL; Saleh A; Kramer B; Cairns J; Ng CP; Yu J; Trietsch SJ; Hankemeier T; Joore J; Vulto P; Weinshilboum R; Wang L
    BMC Cancer; 2017 Nov; 17(1):709. PubMed ID: 29096610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of tumour-on-chip models with patient-derived xenografts for predicting chemotherapy efficacy in colorectal cancer patients.
    Ong LJY; Chia S; Wong SQR; Zhang X; Chua H; Loo JM; Chua WY; Chua C; Tan E; Hentze H; Tan IB; DasGupta R; Toh YC
    Front Bioeng Biotechnol; 2022; 10():952726. PubMed ID: 36147524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics in male reproduction: is ex vivo culture of primate testis tissue a future strategy for ART or toxicology research?
    Sharma S; Venzac B; Burgers T; Le Gac S; Schlatt S
    Mol Hum Reprod; 2020 Mar; 26(3):179-192. PubMed ID: 31977028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor-Microenvironment-on-Chip Platform for Assessing Drug Response in 3D Dynamic Culture.
    Aydin HB; Moon HR; Han B; Ozcelikkale A; Acar A
    Methods Mol Biol; 2024; 2764():265-278. PubMed ID: 38393600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator.
    Lee Y; Chen Z; Lim W; Cho H; Park S
    Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic bubble perfusion device for brain slice culture.
    Saleheen A; Acharyya D; Prosser RA; Baker CA
    Anal Methods; 2021 Mar; 13(11):1364-1373. PubMed ID: 33644791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic endothelium-on-a-chip development, from in vivo to in vitro experimental models.
    Bulboacă AE; Boarescu PM; Melincovici CS; Mihu CM
    Rom J Morphol Embryol; 2020; 61(1):15-23. PubMed ID: 32747891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers.
    Khetani S; Yong KW; Ozhukil Kollath V; Eastick E; Azarmanesh M; Karan K; Sen A; Sanati-Nezhad A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6910-6923. PubMed ID: 31971367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organotypic slice cultures of pancreatic ductal adenocarcinoma preserve the tumor microenvironment and provide a platform for drug response.
    Lim CY; Chang JH; Lee WS; Lee KM; Yoon YC; Kim J; Park IY
    Pancreatology; 2018 Dec; 18(8):913-927. PubMed ID: 30292644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring Real-time Drug Response in Organotypic Tumor Tissue Slices.
    Nishida-Aoki N; Bondesson AJ; Gujral TS
    J Vis Exp; 2020 May; (159):. PubMed ID: 32420994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breast cancer diagnosis using a microfluidic multiplexed immunohistochemistry platform.
    Kim MS; Kim T; Kong SY; Kwon S; Bae CY; Choi J; Kim CH; Lee ES; Park JK
    PLoS One; 2010 May; 5(5):e10441. PubMed ID: 20454672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Microfluidic Array to Study Drug Response in Breast Cancer.
    Virumbrales-Muñoz M; Livingston MK; Farooqui M; Skala MC; Beebe DJ; Ayuso JM
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31801265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics and organ-on-a-chip technologies: A systematic review of the methods used to mimic bone marrow.
    Santos Rosalem G; Gonzáles Torres LA; de Las Casas EB; Mathias FAS; Ruiz JC; Carvalho MGR
    PLoS One; 2020; 15(12):e0243840. PubMed ID: 33306749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organ-on-Chip platforms to study tumor evolution and chemosensitivity.
    Dsouza VL; Kuthethur R; Kabekkodu SP; Chakrabarty S
    Biochim Biophys Acta Rev Cancer; 2022 May; 1877(3):188717. PubMed ID: 35304293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures.
    Dornhof J; Kieninger J; Muralidharan H; Maurer J; Urban GA; Weltin A
    Lab Chip; 2022 Jan; 22(2):225-239. PubMed ID: 34851349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine.
    Rodrigues RO; Sousa PC; Gaspar J; Bañobre-López M; Lima R; Minas G
    Small; 2020 Dec; 16(51):e2003517. PubMed ID: 33236819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.