BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36912418)

  • 1. Characterization of an odor permeable membrane device for the storage of explosives and use as canine training aids.
    Davis K; Reavis M; Goodpaster JV
    J Forensic Sci; 2023 May; 68(3):815-827. PubMed ID: 36912418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.
    Kranz WD; Strange NA; Goodpaster JV
    Anal Bioanal Chem; 2014 Dec; 406(30):7817-25. PubMed ID: 25424725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of canine training aids containment for homemade explosive and components by headspace analysis and canine testing.
    Katilie CJ; DeGreeff LE; Sharpes CE; Best EM; Buckley PE; Gadberry JD; Maughan MN
    J Forensic Sci; 2023 Nov; 68(6):2021-2036. PubMed ID: 37691017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of membrane properties on the odor emanating from training aids for explosive-detecting canines.
    Upadhyaya H; Goodpaster JV
    Anal Bioanal Chem; 2024 Jun; ():. PubMed ID: 38847872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canine olfactory detection of trained explosive and narcotic odors in mixtures using a Mixed Odor Delivery Device.
    DeGreeff LE; Peranich K
    Forensic Sci Int; 2021 Dec; 329():111059. PubMed ID: 34715445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of volatiles from explosive initiators and plastic-bonded explosives (PBX) using headspace solid-phase microextraction coupled with gas chromatography - mass spectrometry (SPME/GC-MS).
    Hecker AJ; Goodpaster JV
    J Forensic Sci; 2024 May; 69(3):847-855. PubMed ID: 38362839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection.
    Harper RJ; Almirall JR; Furton KG
    Talanta; 2005 Aug; 67(2):313-27. PubMed ID: 18970171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards maintaining canine training aid integrity: Effects of environmental factors and operational use on the triacetone triperoxide polymer odor capture-and-release system.
    Cropper E; Riley P; Simon AG
    J Forensic Sci; 2024 May; 69(3):888-904. PubMed ID: 38528830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
    Ong TH; Mendum T; Geurtsen G; Kelley J; Ostrinskaya A; Kunz R
    Anal Chem; 2017 Jun; 89(12):6482-6490. PubMed ID: 28598144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans.
    Lorenzo N; Wan T; Harper RJ; Hsu YL; Chow M; Rose S; Furton KG
    Anal Bioanal Chem; 2003 Aug; 376(8):1212-24. PubMed ID: 12845400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-temperature preparation method for PDMS-based canine training aids for explosives.
    MacCrehan W; Young M; Schantz M; Angle TC; Waggoner P; Fischer T
    Forensic Chem; 2020 Dec; 21():. PubMed ID: 34820592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled Odor Mimic Permeation Systems for Olfactory Training and Field Testing.
    DeGreeff LE; Simon AG; Macias MS; Holness HK; Furton KG
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33586703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid changes in profiles from stored materials used in scent training of explosive detection dogs.
    Mörén L; Bergström F; Brantlind M; Wingfors H
    Sci Justice; 2022 Sep; 62(5):657-665. PubMed ID: 36336459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and canine analysis as complimentary techniques for the identification of active odors of the invasive fungus, Raffaelea lauricola.
    Simon AG; Mills DK; Furton KG
    Talanta; 2017 Jun; 168():320-328. PubMed ID: 28391862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of Canine Detection of Mass Storage Devices: A Study of Volatile Organic Compounds Emanating from Electronic Devices Using Solid Phase Microextraction.
    DeGreeff LE; Cerreta M; Rispoli M
    J Forensic Sci; 2017 Nov; 62(6):1613-1616. PubMed ID: 28597921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of volatile components of drugs and explosives by solid phase microextraction-ion mobility spectrometry.
    Lai H; Guerra P; Joshi M; Almirall JR
    J Sep Sci; 2008 Feb; 31(2):402-12. PubMed ID: 18196520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Headspace concentrations of explosive vapors in containers designed for canine testing and training: theory, experiment, and canine trials.
    Lotspeich E; Kitts K; Goodpaster J
    Forensic Sci Int; 2012 Jul; 220(1-3):130-4. PubMed ID: 22421324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward maintaining canine training aid integrity: Visualizing contamination and testing storage materials for a non-hazardous canine training aid.
    Gauthier QT; Riley P; Simon AG
    J Forensic Sci; 2023 May; 68(3):898-907. PubMed ID: 36991527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvements in the vapor-time profile analysis of explosive odorants using solid-phase microextraction.
    Young M; Schantz M; MacCrehan W
    J Chromatogr A; 2016 Jul; 1455():1-8. PubMed ID: 27286650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.