These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3691299)

  • 101. Prostanoid modulation of glucose transport in isolated diabetic rat uterus.
    González ET; Jawerbaum A; Novaro V; Gimeno MA
    Prostaglandins Leukot Essent Fatty Acids; 1996 Apr; 54(4):293-6. PubMed ID: 8804128
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Effect of insulin and gliclazide on glucose utilization by a perfused intestine-pancreas preparation isolated from diabetic and non-diabetic rats.
    Tormo MA; Gomez-Zubeldia MA; Ropero F; Campillo JE
    Acta Diabetol; 1994 Sep; 31(3):151-5. PubMed ID: 7827354
    [TBL] [Abstract][Full Text] [Related]  

  • 103. An extrapancreatic action of diazoxide to inhibit glucose transport activity on adipocytes.
    Goto Y; Kida K; Kaino Y; Ito T; Matsuda H
    Acta Paediatr Jpn; 1994 Apr; 36(2):128-32. PubMed ID: 8203255
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Differences in glucose handling by pancreatic A- and B-cells.
    Gorus FK; Malaisse WJ; Pipeleers DG
    J Biol Chem; 1984 Jan; 259(2):1196-200. PubMed ID: 6141162
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Increased arachidonic acid uptake by platelets from insulin-dependent diabetics and diabetic rats.
    Perez C; Ramiro JM; Campillo JE
    Diabetes Res Clin Pract; 1989 Jun; 7(1):69-73. PubMed ID: 2502369
    [TBL] [Abstract][Full Text] [Related]  

  • 106. 3-O-methyl-D-glucose uptake by erythrocytes of normal and diabetic subjects.
    Gomis R; Tomas C; Novials A; Malaisse WJ
    Acta Diabetol Lat; 1990; 27(4):279-83. PubMed ID: 2087928
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Clinical application of measurement of glucose transport in human polymorphonuclear leukocytes.
    Okuno Y; Morii H
    Diabetes Res Clin Pract; 1989; 7 Suppl 1():S5-9. PubMed ID: 2806056
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Decreased glucose production from maltose in perfused kidney of streptozotocin diabetic rats.
    Ikeda T; Yoshida T; Honda M; Ito Y; Murakami I; Mokuda O; Tominaga M; Mashiba H
    Proc Soc Exp Biol Med; 1986 Nov; 183(2):241-3. PubMed ID: 3763596
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Regulation of glucose uptake in muscle. II. Rate-limiting steps and effects of insulin and anoxia in heart muscle from diabetic rats.
    MORGAN HE; CADENAS E; REGEN DM; PARK CR
    J Biol Chem; 1961 Feb; 236():262-8. PubMed ID: 13772575
    [No Abstract]   [Full Text] [Related]  

  • 110. Memory improvement by glucose, fructose, and two glucose analogs: a possible effect on peripheral glucose transport.
    Messier C; White NM
    Behav Neural Biol; 1987 Jul; 48(1):104-27. PubMed ID: 3307740
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Stimulation of glucose transport in rat thymocytes by human albumin preparations.
    Regen DM; Juliao SF; Schraw WP
    J Biol Chem; 1982 Oct; 257(20):11937-41. PubMed ID: 7118919
    [No Abstract]   [Full Text] [Related]  

  • 112. Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats.
    MORGAN HE; HENDERSON MJ; REGEN DM; PARK CR
    J Biol Chem; 1961 Feb; 236():253-61. PubMed ID: 13772576
    [No Abstract]   [Full Text] [Related]  

  • 113. Decreased lactate transport in aortas from streptozotocin-diabetic rats.
    Kutchai H; Grantham JR; Geddis LM
    Blood Vessels; 1982; 19(6):318-21. PubMed ID: 7126879
    [No Abstract]   [Full Text] [Related]  

  • 114. Erratum: The Regulation of Insulin-Stimulated Cardiac Glucose Transport via Protein Acetylation.
    Frontiers Production Office
    Front Cardiovasc Med; 2018; 5():103. PubMed ID: 30038909
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Reversibility of decreased insulin-stimulated glucose transport capacity in diabetic muscle with in vitro incubation. Insulin is not required.
    Wallberg-Henriksson H; Zetan N; Henriksson J
    J Biol Chem; 1987 Jun; 262(16):7665-71. PubMed ID: 3294836
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Activation of glucose transport in diabetic muscle: responses to contraction and insulin.
    Wallberg-Henriksson H; Holloszy JO
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C233-7. PubMed ID: 3898862
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Glucose tolerance factor stimulates 3-O-methylglucose transport into isolated rat adipocytes.
    Tokuda M; Kashiwagi A; Wakamiya E; Oguni T; Mino M; Kagamiyama H
    Biochem Biophys Res Commun; 1987 May; 144(3):1237-42. PubMed ID: 3555500
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Interactions of insulin, catecholamines and adenosine in the regulation of glucose transport in isolated rat cardiac myocytes.
    Shanahan MF; Edwards BM; Ruoho AE
    Biochim Biophys Acta; 1986 Jun; 887(1):121-9. PubMed ID: 3518811
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Transport and post-transport abnormalities of glucose metabolism in cardiocytes isolated from streptozotocin-induced diabetic rats.
    Kashiwagi A; Saeki Y; Harano Y; Shigeta Y
    Diabetes Res Clin Pract; 1987 Nov; 4(1):51-9. PubMed ID: 3691299
    [TBL] [Abstract][Full Text] [Related]  

  • 120.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.