These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36913088)

  • 1. Musculotendon Parameters in Lower Limb Models: Simplifications, Uncertainties, and Muscle Force Estimation Sensitivity.
    Chen Z; Franklin DW
    Ann Biomed Eng; 2023 Jun; 51(6):1147-1164. PubMed ID: 36913088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling.
    Modenese L; Montefiori E; Wang A; Wesarg S; Viceconti M; Mazzà C
    J Biomech; 2018 May; 73():108-118. PubMed ID: 29673935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique.
    Modenese L; Ceseracciu E; Reggiani M; Lloyd DG
    J Biomech; 2016 Jan; 49(2):141-8. PubMed ID: 26776930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo determination of subject-specific musculotendon parameters: applications to the prime elbow flexors in normal and hemiparetic subjects.
    Koo TK; Mak AF; Hung LK
    Clin Biomech (Bristol, Avon); 2002 Jun; 17(5):390-9. PubMed ID: 12084544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Hill-type musculotendon models with activation-force-length coupling.
    Sun L; Sun Y; Huang Z; Hou J; Wu J
    Technol Health Care; 2018; 26(6):909-920. PubMed ID: 29914041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry.
    Bosmans L; Valente G; Wesseling M; Van Campen A; De Groote F; De Schutter J; Jonkers I
    J Biomech; 2015 Jul; 48(10):2116-23. PubMed ID: 25979383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-splines.
    Sartori M; Reggiani M; van den Bogert AJ; Lloyd DG
    J Biomech; 2012 Feb; 45(3):595-601. PubMed ID: 22176708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How musculotendon architecture and joint geometry affect the capacity of muscles to move and exert force on objects: a review with application to arm and forearm tendon transfer design.
    Zajac FE
    J Hand Surg Am; 1992 Sep; 17(5):799-804. PubMed ID: 1401783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function.
    Wu W; Lee PVS; Bryant AL; Galea M; Ackland DC
    J Biomech; 2016 Nov; 49(15):3626-3634. PubMed ID: 28327299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Musculotendon excursion potential, tendon slack and muscle fibre length: the interaction of the canine gastrocnemius muscle and tendon.
    Dries B; Vanwanseele B; Jonkers I; Dingemanse W; Vander Sloten J; Villamonte-Chevalier A; Van der Vekens E; Polis I; Vanderperren K; Van Bree H; Gielen I
    J Anat; 2018 Oct; 233(4):460-467. PubMed ID: 29984496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle.
    Hoy MG; Zajac FE; Gordon ME
    J Biomech; 1990; 23(2):157-69. PubMed ID: 2312520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver.
    Ruggiero M; Cless D; Infantolino B
    PLoS One; 2016; 11(12):e0162963. PubMed ID: 28033339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo analysis of muscle force estimation sensitivity to muscle-tendon properties using a Hill-based muscle model.
    Bujalski P; Martins J; Stirling L
    J Biomech; 2018 Oct; 79():67-77. PubMed ID: 30146173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of electromyography-assisted modelling in estimating musculotendon forces during gait in children with cerebral palsy.
    Veerkamp K; Schallig W; Harlaar J; Pizzolato C; Carty CP; Lloyd DG; van der Krogt MM
    J Biomech; 2019 Jul; 92():45-53. PubMed ID: 31153626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model.
    Menegaldo LL; de Toledo Fleury A; Weber HI
    J Biomech; 2004 Sep; 37(9):1447-53. PubMed ID: 15275854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joined effects of pennation angle and tendon compliance on fibre length in isometric contractions: a simulation study.
    Legreneur P; Morlon B; Van Hoecke J
    Arch Physiol Biochem; 1997 Sep; 105(5):450-5. PubMed ID: 9439782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static versus dynamic muscle modelling in extinct species: a biomechanical case study of the
    Wiseman ALA; Charles JP; Hutchinson JR
    PeerJ; 2024; 12():e16821. PubMed ID: 38313026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of musculotendon properties in the human upper limb.
    Garner BA; Pandy MG
    Ann Biomed Eng; 2003 Feb; 31(2):207-20. PubMed ID: 12627828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters.
    Winby CR; Lloyd DG; Kirk TB
    J Biomech; 2008; 41(8):1682-8. PubMed ID: 18456272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.