These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36913641)

  • 1. Kinetics of the Simplest Criegee Intermediate CH
    Chen Y; Jiang H; Liu S; Shi J; Jin Y; Yang X; Dong W
    J Phys Chem A; 2023 Mar; 127(11):2432-2439. PubMed ID: 36913641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The simplest Criegee intermediate CH
    Chen Y; Zhong L; Liu S; Jiang H; Shi J; Jin Y; Yang X; Dong W
    Phys Chem Chem Phys; 2023 Aug; 25(34):23187-23196. PubMed ID: 37605796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction Kinetics of CH
    Jiang H; Liu Y; Xiao C; Yang X; Dong W
    J Phys Chem A; 2024 Jun; 128(25):4956-4965. PubMed ID: 38868987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the reaction of the simplest Criegee intermediate with ammonia: a combination of experiment and theory.
    Liu Y; Yin C; Smith MC; Liu S; Chen M; Zhou X; Xiao C; Dai D; Lin JJ; Takahashi K; Dong W; Yang X
    Phys Chem Chem Phys; 2018 Dec; 20(47):29669-29676. PubMed ID: 30474089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature- and pressure-dependent rate coefficient measurement for the reaction of CH
    Liu Y; Zhou X; Chen Y; Chen M; Xiao C; Dong W; Yang X
    Phys Chem Chem Phys; 2020 Nov; 22(44):25869-25875. PubMed ID: 33155610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Dependent Rate Coefficient for the Reaction of CH
    Li YL; Lin YH; Yin C; Takahashi K; Chiang CY; Chang YP; Lin JJ
    J Phys Chem A; 2019 May; 123(19):4096-4103. PubMed ID: 31017782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved, broadband UV-absorption spectrometry measurements of Criegee intermediate kinetics using a new photolytic precursor: unimolecular decomposition of CH
    Peltola J; Seal P; Inkilä A; Eskola A
    Phys Chem Chem Phys; 2020 Jun; 22(21):11797-11808. PubMed ID: 32347242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the Simplest Criegee Intermediate Reaction with Water Vapor: Revisit and Isotope Effect.
    Wu YJ; Takahashi K; Lin JJ
    J Phys Chem A; 2023 Oct; 127(39):8059-8072. PubMed ID: 37734061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and pressure-dependent HO
    Luo PL
    Phys Chem Chem Phys; 2023 Feb; 25(5):4062-4069. PubMed ID: 36651102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unimolecular decomposition kinetics of the stabilised Criegee intermediates CH
    Stone D; Au K; Sime S; Medeiros DJ; Blitz M; Seakins PW; Decker Z; Sheps L
    Phys Chem Chem Phys; 2018 Oct; 20(38):24940-24954. PubMed ID: 30238099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Negative Temperature Dependence of the Simplest Criegee Intermediate CH2OO Reaction with Water Dimer.
    Smith MC; Chang CH; Chao W; Lin LC; Takahashi K; Boering KA; Lin JJ
    J Phys Chem Lett; 2015 Jul; 6(14):2708-13. PubMed ID: 26266852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes.
    Buras ZJ; Elsamra RM; Jalan A; Middaugh JE; Green WH
    J Phys Chem A; 2014 Mar; 118(11):1997-2006. PubMed ID: 24559303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic study of the CH
    Liu Y; Liu F; Liu S; Dai D; Dong W; Yang X
    Phys Chem Chem Phys; 2017 Aug; 19(31):20786-20794. PubMed ID: 28740976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detailed mechanism of the CH₂I + O₂ reaction: yield and self-reaction of the simplest Criegee intermediate CH₂OO.
    Ting WL; Chang CH; Lee YF; Matsui H; Lee YP; Lin JJ
    J Chem Phys; 2014 Sep; 141(10):104308. PubMed ID: 25217917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure.
    Stone D; Blitz M; Daubney L; Howes NU; Seakins P
    Phys Chem Chem Phys; 2014 Jan; 16(3):1139-49. PubMed ID: 24287566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the gas phase reaction of the Criegee intermediate CH
    Onel L; Lade R; Mortiboy J; Blitz MA; Seakins PW; Heard DE; Stone D
    Phys Chem Chem Phys; 2021 Sep; 23(35):19415-19423. PubMed ID: 34494054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of kinetics and mechanistic insights of the reaction of criegee intermediate (CH
    Debnath A; Rajakumar B
    Chemosphere; 2023 Jan; 312(Pt 1):137217. PubMed ID: 36370759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of CH
    Zhou X; Chen Y; Liu Y; Li X; Dong W; Yang X
    Phys Chem Chem Phys; 2021 Jun; 23(23):13276-13283. PubMed ID: 34095924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring rate constants for reactions of the simplest Criegee intermediate (CH2OO) by monitoring the OH radical.
    Liu Y; Bayes KD; Sander SP
    J Phys Chem A; 2014 Jan; 118(4):741-7. PubMed ID: 24400595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and computational studies of Criegee intermediate reactions with NH
    Chhantyal-Pun R; Shannon RJ; Tew DP; Caravan RL; Duchi M; Wong C; Ingham A; Feldman C; McGillen MR; Khan MAH; Antonov IO; Rotavera B; Ramasesha K; Osborn DL; Taatjes CA; Percival CJ; Shallcross DE; Orr-Ewing AJ
    Phys Chem Chem Phys; 2019 Jul; 21(26):14042-14052. PubMed ID: 30652179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.