These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36913782)

  • 1. Ultrasound-assisted Peptide Nucleic Acids synthesis (US-PNAS).
    Del Bene A; D'Aniello A; Tomassi S; Merlino F; Mazzarella V; Russo R; Chambery A; Cosconati S; Di Maro S; Messere A
    Ultrason Sonochem; 2023 May; 95():106360. PubMed ID: 36913782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids.
    Toh DK; Patil KM; Chen G
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA hairpin invasion and ribosome elongation arrest by mixed base PNA oligomer.
    Dias N; Sénamaud-Beaufort C; Forestier El El; Auvin C; Hélène C; Ester Saison-Behmoaras T
    J Mol Biol; 2002 Jul; 320(3):489-501. PubMed ID: 12096905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization of complementary and homologous peptide nucleic acid oligomers to a guanine quadruplex-forming RNA.
    Marin VL; Armitage BA
    Biochemistry; 2006 Feb; 45(6):1745-54. PubMed ID: 16460021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-Phase Synthesis of Difficult Purine-Rich PNAs through Selective Hmb Incorporation: Application to the Total Synthesis of Cell Penetrating Peptide-PNAs.
    Tailhades J; Takizawa H; Gait MJ; Wellings DA; Wade JD; Aoki Y; Shabanpoor F
    Front Chem; 2017; 5():81. PubMed ID: 29094037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PNA monomers fully compatible with standard Fmoc-based solid-phase synthesis of pseudocomplementary PNA.
    Sugiyama T; Hasegawa G; Niikura C; Kuwata K; Imamura Y; Demizu Y; Kurihara M; Kittaka A
    Bioorg Med Chem Lett; 2017 Aug; 27(15):3337-3341. PubMed ID: 28610975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short pyrimidine stretches containing mixed base PNAs are versatile tools to induce translation elongation arrest and truncated protein synthesis.
    Sénamaud-Beaufort C; Leforestier E; Saison-Behmoaras TE
    Oligonucleotides; 2003; 13(6):465-78. PubMed ID: 15025913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The challenge of peptide nucleic acid synthesis.
    Nandhini KP; Shaer DA; Albericio F; de la Torre BG
    Chem Soc Rev; 2023 Apr; 52(8):2764-2789. PubMed ID: 37010921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PNA as a Biosupramolecular Tag for Programmable Assemblies and Reactions.
    Barluenga S; Winssinger N
    Acc Chem Res; 2015 May; 48(5):1319-31. PubMed ID: 25947113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers.
    Gambari R
    Curr Pharm Des; 2001 Nov; 7(17):1839-62. PubMed ID: 11562312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
    Devi G; Yuan Z; Lu Y; Zhao Y; Chen G
    Nucleic Acids Res; 2014 Apr; 42(6):4008-18. PubMed ID: 24423869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A steric blocker of translation elongation inhibits IGF-1R expression and cell transformation.
    Lecosnier S; Cordier C; Simon P; François JC; Saison-Behmoaras TE
    FASEB J; 2011 Jul; 25(7):2201-10. PubMed ID: 21402719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using triple-helix-forming Peptide nucleic acids for sequence-selective recognition of double-stranded RNA.
    Hnedzko D; Cheruiyot SK; Rozners E
    Curr Protoc Nucleic Acid Chem; 2014 Sep; 58():4.60.1-23. PubMed ID: 25199637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and off-target prediction for antisense oligomers targeting bacterial mRNAs with the MASON web server.
    Jung J; Popella L; Do PT; Pfau P; Vogel J; Barquist L
    RNA; 2023 May; 29(5):570-583. PubMed ID: 36750372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multivalent LKγ-PNA oligomers bind to a human telomere DNA G-rich sequence to form quadruplexes.
    Gupta P; Rastede EE; Appella DH
    Bioorg Med Chem Lett; 2015 Nov; 25(21):4757-4760. PubMed ID: 26259805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient, convenient solid-phase synthesis of amino acid-modified peptide nucleic acid monomers and oligomers.
    Balaji BS; Gallazzi F; Jia F; Lewis MR
    Bioconjug Chem; 2006; 17(2):551-8. PubMed ID: 16536490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fmoc-Based Assembly of PNA Oligomers: Manual and Microwave-Assisted Automated Synthesis.
    Shaikh AY; Hansen AM; Franzyk H
    Methods Mol Biol; 2020; 2105():1-16. PubMed ID: 32088861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide nucleic acids (PNAs) patterning by an automated microarray synthesis system through photolithography.
    Wu YQ; Yang FP; Wang HY; Liu JX; Liu ZC
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2061-7. PubMed ID: 23755646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of transfection protocols for unmodified and modified peptide nucleic acid (PNA) oligomers.
    Rasmussen FW; Bendifallah N; Zachar V; Shiraishi T; Fink T; Ebbesen P; Nielsen PE; Koppelhus U
    Oligonucleotides; 2006; 16(1):43-57. PubMed ID: 16584294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstrating specificity of bioactive peptide nucleic acids (PNAs) targeting microRNAs for practical laboratory classes of applied biochemistry and pharmacology.
    Gasparello J; Papi C; Zurlo M; Corradini R; Gambari R; Finotti A
    PLoS One; 2019; 14(9):e0221923. PubMed ID: 31509554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.