These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36913830)

  • 41. An Efficient Light-weight Network for Fast Reconstruction on MR Images.
    Zhen B; Zheng Y; Qiu B
    Curr Med Imaging; 2021; 17(11):1374-1384. PubMed ID: 33459243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Post-processing radio-frequency signal based on deep learning method for ultrasonic microbubble imaging.
    Dai M; Li S; Wang Y; Zhang Q; Yu J
    Biomed Eng Online; 2019 Sep; 18(1):95. PubMed ID: 31511011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic coherence factor based on the standard deviation for coherent plane-wave compounding.
    Wang Y; Zheng C; Peng H
    Comput Biol Med; 2019 May; 108():249-262. PubMed ID: 31005800
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plane-wave medical image reconstruction based on dynamic Criss-Cross attention and multi-scale convolution.
    Yang C; Bian T; Yang J; Hou J; Cao Y; Han Z; Zhao X; Wen W; Zhu X
    Technol Health Care; 2024; 32(S1):299-312. PubMed ID: 38759058
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 40 MHz high-frequency ultrafast ultrasound imaging.
    Huang CC; Chen PY; Peng PH; Lee PY
    Med Phys; 2017 Jun; 44(6):2185-2195. PubMed ID: 28369938
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast super-resolution ultrasound microvessel imaging using spatiotemporal data with deep fully convolutional neural network.
    Lok UW; Huang C; Gong P; Tang S; Yang L; Zhang W; Kim Y; Korfiatis P; Blezek DJ; Lucien F; Zheng R; Trzasko JD; Chen S
    Phys Med Biol; 2021 Mar; 66(7):. PubMed ID: 33652418
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A two-dimensional angular interpolation based on radial basis functions for high frame rate ultrafast imaging.
    Afrakhteh S; Iacca G; Demi L
    J Acoust Soc Am; 2023 Nov; 154(5):3454-3465. PubMed ID: 38015029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Minimizing Image Quality Loss After Channel Count Reduction for Plane Wave Ultrasound via Deep Learning Inference.
    Xiao D; Pitman WMK; Yiu BYS; Chee AJY; Yu ACH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2849-2861. PubMed ID: 35862334
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plane-Wave Ultrasound Beamforming Through Independent Component Analysis.
    Goudarzi S; Asif A; Rivaz H
    Comput Methods Programs Biomed; 2021 May; 203():106036. PubMed ID: 33756188
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional self super-resolution for pelvic floor MRI using a convolutional neural network with multi-orientation data training.
    Feng F; Ashton-Miller JA; DeLancey JOL; Luo J
    Med Phys; 2022 Feb; 49(2):1083-1096. PubMed ID: 34967014
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wireless, Real-Time Plane-Wave Coherent Compounding on an iPhone: A Feasibility Study.
    Palmer CL; Rindal OMH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jul; 66(7):1222-1231. PubMed ID: 31056494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep Learning to Obtain Simultaneous Image and Segmentation Outputs From a Single Input of Raw Ultrasound Channel Data.
    Nair AA; Washington KN; Tran TD; Reiter A; Lediju Bell MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2493-2509. PubMed ID: 32396084
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.
    Mansour O; Poepping TL; Lacefield JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1865-1877. PubMed ID: 27455525
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plane wave compounding based on a joint transmitting-receiving adaptive beamformer.
    Zhao J; Wang Y; Zeng X; Yu J; Yiu BY; Yu AC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Aug; 62(8):1440-52. PubMed ID: 26276954
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Circular statistics vector for improving coherent plane wave compounding image in Fourier domain.
    Chen Y; Xiong Z; Kong Q; Ma X; Chen M; Lu C
    Ultrasonics; 2023 Feb; 128():106856. PubMed ID: 36242803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Small training dataset convolutional neural networks for application-specific super-resolution microscopy.
    Mannam V; Howard S
    J Biomed Opt; 2023 Mar; 28(3):036501. PubMed ID: 36925620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep learning approach for Fourier ptychography microscopy.
    Nguyen T; Xue Y; Li Y; Tian L; Nehmetallah G
    Opt Express; 2018 Oct; 26(20):26470-26484. PubMed ID: 30469733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automatic Frame Selection using CNN in Ultrasound Elastography.
    Zayed A; Cloutier G; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2027-2030. PubMed ID: 33018402
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-scale cascaded networks for synthesis of mammogram to decrease intensity distortion and increase model-based perceptual similarity.
    Jiang G; He Z; Zhou Y; Wei J; Xu Y; Zeng H; Wu J; Qin G; Chen W; Lu Y
    Med Phys; 2023 Feb; 50(2):837-853. PubMed ID: 36196045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.