BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36913871)

  • 1. New insights on low-temperature storage regulating garlic greening and the accumulation of pigment precursors via glutathione metabolism and energy cycles.
    Lu R; Hou W; Zhao W; Zhao S; Wang P; Zhao X; Wang D
    Food Chem; 2023 Aug; 417():135848. PubMed ID: 36913871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of precursors on greening in crushed garlic (Allium sativum) bulbs, and its control with freeze-dried onion powder.
    Cho J; Lee EJ; Yoo KS; Lee SK
    J Sci Food Agric; 2012 Jan; 92(2):246-52. PubMed ID: 21918991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model studies on precursor system generating blue pigment in onion and garlic.
    Imai S; Akita K; Tomotake M; Sawada H
    J Agric Food Chem; 2006 Feb; 54(3):848-52. PubMed ID: 16448193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptome and proteome profiles reveal the regulation mechanism of low temperature on garlic greening.
    Lu R; Wang X; Zhao W; Wang P; Zhao S; Zhao X; Wang D
    Food Res Int; 2022 Nov; 161():111823. PubMed ID: 36192892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between gamma-glutamyl transpeptidase activity and garlic greening, as controlled by temperature.
    Li L; Hu D; Jiang Y; Chen F; Hu X; Zhao G
    J Agric Food Chem; 2008 Feb; 56(3):941-5. PubMed ID: 18205306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and expression of γ-glutamyl transpeptidase and its relationship to greening in crushed garlic (Allium sativum) cloves.
    Cho J; Park M; Choi D; Lee SK
    J Sci Food Agric; 2012 Jan; 92(2):253-7. PubMed ID: 21919000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving knowledge of garlic paste greening through the design of an experimental strategy.
    Aguilar M; Rincón F
    J Agric Food Chem; 2007 Dec; 55(25):10266-74. PubMed ID: 18001035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-(1H-pyrrolyl)carboxylic acids as pigment precursors in garlic greening.
    Wang D; Nanding H; Han N; Chen F; Zhao G
    J Agric Food Chem; 2008 Feb; 56(4):1495-500. PubMed ID: 18197624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis reveals the mechanism of green regulation in garlic puree induced by purple light stress.
    Fan G; He Y; Kou X; Dou J; Li T; Wu C; Zhu J
    J Food Sci; 2022 Oct; 87(10):4548-4568. PubMed ID: 36084143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different light spectra on the pigmentation of stored elephant garlic.
    Comparini D; Nguyen HT; Ueda K; Moritaka K; Kihara T; Kawano T
    J Sci Food Agric; 2018 May; 98(7):2598-2606. PubMed ID: 29064558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of porphobilinogen on the formation of garlic green pigments.
    Mou C; Hao X; Xu Z; Qiao X
    J Sci Food Agric; 2013 Aug; 93(10):2454-7. PubMed ID: 23436238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of candidate amino acids involved in the formation of pink-red pigments in onion (Allium cepa L.) juice and separation by HPLC.
    Lee EJ; Yoo KS; Patil BS
    J Food Sci; 2010 Oct; 75(8):C684-9. PubMed ID: 21535486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of illumination on the greening and relative enzyme activity of garlic puree.
    He Y; Fan GJ; Wu CE; Kou XH; Li TT
    J Food Biochem; 2019 Jul; 43(7):e12871. PubMed ID: 31353726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic-induced stress activates sulfur metabolism in different organs of garlic (Allium sativum L.) plants accompanied by a general decline of the NADPH-generating systems in roots.
    Ruíz-Torres C; Feriche-Linares R; Rodríguez-Ruíz M; Palma JM; Corpas FJ
    J Plant Physiol; 2017 Apr; 211():27-35. PubMed ID: 28142094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 'Laba' garlic processed by dense phase carbon dioxide: the relation between green colour generation and cellular structure, alliin consumption and alliinase activity.
    Tao D; Zhou B; Zhang L; Hu X; Liao X; Zhang Y
    J Sci Food Agric; 2016 Jul; 96(9):2969-75. PubMed ID: 26374695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of the flavour precursors of onion and garlic.
    Jones MG; Hughes J; Tregova A; Milne J; Tomsett AB; Collin HA
    J Exp Bot; 2004 Aug; 55(404):1903-18. PubMed ID: 15234988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic.
    Yoshimoto N; Onuma M; Mizuno S; Sugino Y; Nakabayashi R; Imai S; Tsuneyoshi T; Sumi S; Saito K
    Plant J; 2015 Sep; 83(6):941-51. PubMed ID: 26345717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the greening color formation of "laba" garlic, a traditional homemade chinese food product.
    Bai B; Chen F; Wang Z; Liao X; Zhao G; Hu X
    J Agric Food Chem; 2005 Sep; 53(18):7103-7. PubMed ID: 16131117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allium discoloration: precursors involved in onion pinking and garlic greening.
    Kubec R; Hrbácová M; Musah RA; Velísek J
    J Agric Food Chem; 2004 Aug; 52(16):5089-94. PubMed ID: 15291480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strategy for promoting γ-glutamyltransferase activity and enzymatic synthesis of S-allyl-(L)-cysteine in aged garlic via high hydrostatic pressure pretreatments.
    Chen YT; Chen YA; Lee CH; Wu JT; Cheng KC; Hsieh CW
    Food Chem; 2020 Jun; 316():126347. PubMed ID: 32045818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.