These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36914355)

  • 21. Application of spray drying, spray chilling and the combination of both methods to produce tucumã oil microparticles: characterization, stability, and β-carotene bioaccessibility.
    Santos PDF; Batista PS; Torres LCR; Thomazini M; de Alencar SM; Favaro-Trindade CS
    Food Res Int; 2023 Oct; 172():113174. PubMed ID: 37689927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of non-thermal treatments and fermentation with probiotic Lactobacillus plantarum on in vitro bioaccessibility of bioactives from vegetable juice.
    Dogan K; Akman PK; Tornuk F
    J Sci Food Agric; 2021 Aug; 101(11):4779-4788. PubMed ID: 33502754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts.
    Flores FP; Singh RK; Kerr WL; Phillips DR; Kong F
    Food Chem; 2015 Feb; 168():225-32. PubMed ID: 25172704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incorporation of microencapsulated polyphenols from jabuticaba peel (Plinia spp.) into a dairy drink: stability, in vitro bioaccessibility, and glycemic response.
    Coelho VS; Aguiar LL; Grancieri M; Lourenço JMP; Braga DP; Saraiva SH; Costa AGV; Silva PI
    Food Res Int; 2024 Aug; 189():114567. PubMed ID: 38876609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vermicompost Supplementation Improves the Stability of Bioactive Anthocyanin and Phenolic Compounds in
    Yusof Z; Ramasamy S; Mahmood NZ; Yaacob JS
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29867000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of in vitro digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace.
    Wang S; Amigo-Benavent M; Mateos R; Bravo L; Sarriá B
    Int J Food Sci Nutr; 2017 Mar; 68(2):188-200. PubMed ID: 27609024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antioxidant capacity in cranberry is influenced by cultivar and storage temperature.
    Wang SY; Stretch AW
    J Agric Food Chem; 2001 Feb; 49(2):969-74. PubMed ID: 11262058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules.
    Romero-González J; Shun Ah-Hen K; Lemus-Mondaca R; Muñoz-Fariña O
    Food Chem; 2020 May; 313():126115. PubMed ID: 31927206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physicochemical stability and in vitro bioaccessibility of phenolic compounds and anthocyanins from Thai rice bran extracts.
    Peanparkdee M; Patrawart J; Iwamoto S
    Food Chem; 2020 Nov; 329():127157. PubMed ID: 32504918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of high-oxygen atmospheres on blueberry phenolics, anthocyanins, and antioxidant capacity.
    Zheng Y; Wang CY; Wang SY; Zheng W
    J Agric Food Chem; 2003 Nov; 51(24):7162-9. PubMed ID: 14611188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antioxidant capacity of cinnamon extract for palm oil stability.
    Shahid MZ; Saima H; Yasmin A; Nadeem MT; Imran M; Afzaal M
    Lipids Health Dis; 2018 May; 17(1):116. PubMed ID: 29769067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production and characterization of solid lipid microparticles loaded with guaraná (Paullinia cupana) seed extract.
    Silva MP; Thomazini M; Holkem AT; Pinho LS; Genovese MI; Fávaro-Trindade CS
    Food Res Int; 2019 Sep; 123():144-152. PubMed ID: 31284962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microencapsulation of Anthocyanin Extracted from Purple Flesh Cultivated Potatoes by Spray Drying and Its Effects on In Vitro Gastrointestinal Digestion.
    Vergara C; Pino MT; Zamora O; Parada J; Pérez R; Uribe M; Kalazich J
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic hydrolysis improves the encapsulation properties of rice bran protein by increasing retention of anthocyanins in microparticles of grape juice.
    Fernandes Almeida R; Gouveia Gomes MH; Kurozawa LE
    Food Res Int; 2024 Mar; 180():114090. PubMed ID: 38395563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physicochemical properties, degradation kinetics, and antioxidant capacity of aqueous anthocyanin-based extracts from purple carrots compared to synthetic and natural food colorants.
    Perez MB; Da Peña Hamparsomian MJ; Gonzalez RE; Denoya GI; Dominguez DLE; Barboza K; Iorizzo M; Simon PW; Vaudagna SR; Cavagnaro PF
    Food Chem; 2022 Sep; 387():132893. PubMed ID: 35397275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions.
    Mansour M; Salah M; Xu X
    Ultrason Sonochem; 2020 May; 63():104927. PubMed ID: 31952001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rice bran protein increases the retention of anthocyanins by acting as an encapsulating agent in the spray drying of grape juice.
    Almeida RF; Gomes MHG; Kurozawa LE
    Food Res Int; 2023 Oct; 172():113237. PubMed ID: 37689965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal conditions for anthocyanin extract microencapsulation in taro starch: Physicochemical characterization and bioaccessibility in gastrointestinal conditions.
    Rosales-Chimal S; Navarro-Cortez RO; Bello-Perez LA; Vargas-Torres A; Palma-Rodríguez HM
    Int J Biol Macromol; 2023 Feb; 227():83-92. PubMed ID: 36535350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends.
    Moser P; Telis VRN; de Andrade Neves N; García-Romero E; Gómez-Alonso S; Hermosín-Gutiérrez I
    Food Chem; 2017 Jan; 214():308-318. PubMed ID: 27507480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ferrous sulfate microparticles obtained by
    Rebellato AP; de Moraes PP; Silva JGS; Alvim ID; Lima Pallone JA; Steel CJ
    J Food Sci Technol; 2024 Jan; 61(1):97-105. PubMed ID: 38192707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.