These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 36914683)
21. Spin-Orbit Torque Switching in an All-Van der Waals Heterostructure. Shin I; Cho WJ; An ES; Park S; Jeong HW; Jang S; Baek WJ; Park SY; Yang DH; Seo JH; Kim GY; Ali MN; Choi SY; Lee HW; Kim JS; Kim SD; Lee GH Adv Mater; 2022 Feb; 34(8):e2101730. PubMed ID: 34908193 [TBL] [Abstract][Full Text] [Related]
22. Exchange Bias Modulated by Antiferromagnetic Spin-Flop Transition in 2D Van der Waals Heterostructures. Gu K; Zhang X; Liu X; Guo X; Wu Z; Wang S; Song Q; Wang W; Wei L; Liu P; Ma J; Xu Y; Niu W; Pu Y Adv Sci (Weinh); 2024 May; 11(17):e2307034. PubMed ID: 38353386 [TBL] [Abstract][Full Text] [Related]
23. History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe Birch MT; Powalla L; Wintz S; Hovorka O; Litzius K; Loudon JC; Turnbull LA; Nehruji V; Son K; Bubeck C; Rauch TG; Weigand M; Goering E; Burghard M; Schütz G Nat Commun; 2022 May; 13(1):3035. PubMed ID: 35641499 [TBL] [Abstract][Full Text] [Related]
24. Prospect for measuring two-dimensional van der Waals magnets by electron magnetic chiral dichroism. Song D; Zheng F; Dunin-Borkowski RE Ultramicroscopy; 2022 Apr; 234():113476. PubMed ID: 35114564 [TBL] [Abstract][Full Text] [Related]
25. Tunable high-temperature itinerant antiferromagnetism in a van der Waals magnet. Seo J; An ES; Park T; Hwang SY; Kim GY; Song K; Noh WS; Kim JY; Choi GS; Choi M; Oh E; Watanabe K; Taniguchi T; Park J-; Jo YJ; Yeom HW; Choi SY; Shim JH; Kim JS Nat Commun; 2021 May; 12(1):2844. PubMed ID: 33990589 [TBL] [Abstract][Full Text] [Related]
26. Writing and Detecting Topological Charges in Exfoliated Fe Moon A; Li Y; McKeever C; Casas BW; Bravo M; Zheng W; Macy J; Petford-Long AK; McCandless GT; Chan JY; Phatak C; Santos EJG; Balicas L ACS Nano; 2024 Feb; 18(5):4216-4228. PubMed ID: 38262067 [TBL] [Abstract][Full Text] [Related]
27. Probing spin dynamics of ultra-thin van der Waals magnets via photon-magnon coupling. Zollitsch CW; Khan S; Nam VTT; Verzhbitskiy IA; Sagkovits D; O'Sullivan J; Kennedy OW; Strungaru M; Santos EJG; Morton JJL; Eda G; Kurebayashi H Nat Commun; 2023 May; 14(1):2619. PubMed ID: 37147370 [TBL] [Abstract][Full Text] [Related]
28. Ferroelectric Control of Magnetic Skyrmions in Two-Dimensional van der Waals Heterostructures. Huang K; Shao DF; Tsymbal EY Nano Lett; 2022 Apr; 22(8):3349-3355. PubMed ID: 35380845 [TBL] [Abstract][Full Text] [Related]
29. Intrinsic Van Der Waals Magnetic Materials from Bulk to the 2D Limit: New Frontiers of Spintronics. Li H; Ruan S; Zeng YJ Adv Mater; 2019 Jul; 31(27):e1900065. PubMed ID: 31069896 [TBL] [Abstract][Full Text] [Related]
30. Manipulation and Optical Detection of Artificial Topological Phenomena in 2D Van der Waals Fe Chen X; Wang H; Li M; Hao Q; Cai M; Dai H; Chen H; Xing Y; Liu J; Wang X; Zhai T; Zhou X; Han JB Adv Sci (Weinh); 2023 Aug; 10(22):e2207617. PubMed ID: 37327250 [TBL] [Abstract][Full Text] [Related]
31. Modulation of skyrmionic magnetic textures in two-dimensional vdW materials and their heterostructures. Yao X; Hu D; Dong S iScience; 2023 Apr; 26(4):106311. PubMed ID: 37153449 [TBL] [Abstract][Full Text] [Related]
32. Anisotropic Dzyaloshinskii-Moriya Interaction and Topological Magnetism in Two-Dimensional Magnets Protected by Cui Q; Zhu Y; Ga Y; Liang J; Li P; Yu D; Cui P; Yang H Nano Lett; 2022 Mar; 22(6):2334-2341. PubMed ID: 35266723 [TBL] [Abstract][Full Text] [Related]
33. Proximity Spin-Orbit Torque on a Two-Dimensional Magnet within van der Waals Heterostructure: Current-Driven Antiferromagnet-to-Ferromagnet Reversible Nonequilibrium Phase Transition in Bilayer CrI Dolui K; Petrović MD; Zollner K; Plecháč P; Fabian J; Nikolić BK Nano Lett; 2020 Apr; 20(4):2288-2295. PubMed ID: 32130017 [TBL] [Abstract][Full Text] [Related]
34. Field-free deterministic switching of all-van der Waals spin-orbit torque system above room temperature. Kajale SN; Nguyen T; Hung NT; Li M; Sarkar D Sci Adv; 2024 Mar; 10(11):eadk8669. PubMed ID: 38489365 [TBL] [Abstract][Full Text] [Related]
35. Influence of Magnetic Sublattice Ordering on Skyrmion Bubble Stability in 2D Magnet Fe Birch MT; Yasin FS; Litzius K; Powalla L; Wintz S; Schulz F; Kossak AE; Weigand M; Scholz T; Lotsch BV; Schütz G; Yu XZ; Burghard M ACS Nano; 2024 Jul; 18(28):18246-18256. PubMed ID: 38975730 [TBL] [Abstract][Full Text] [Related]
36. Ultrathin Van der Waals Antiferromagnet CrTe Yao J; Wang H; Yuan B; Hu Z; Wu C; Zhao A Adv Mater; 2022 Jun; 34(23):e2200236. PubMed ID: 35419894 [TBL] [Abstract][Full Text] [Related]
37. Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet. Yun C; Guo H; Lin Z; Peng L; Liang Z; Meng M; Zhang B; Zhao Z; Wang L; Ma Y; Liu Y; Li W; Ning S; Hou Y; Yang J; Luo Z Sci Adv; 2023 Dec; 9(49):eadj3955. PubMed ID: 38064554 [TBL] [Abstract][Full Text] [Related]
38. Spin photovoltaic effect in magnetic van der Waals heterostructures. Song T; Anderson E; Tu MW; Seyler K; Taniguchi T; Watanabe K; McGuire MA; Li X; Cao T; Xiao D; Yao W; Xu X Sci Adv; 2021 Sep; 7(36):eabg8094. PubMed ID: 34516904 [TBL] [Abstract][Full Text] [Related]
39. Layer-Dependent Magnetism and Spin Fluctuations in Atomically Thin van der Waals Magnet CrPS Huang M; Green JC; Zhou J; Williams V; Li S; Lu H; Djugba D; Wang H; Flebus B; Ni N; Du CR Nano Lett; 2023 Sep; 23(17):8099-8105. PubMed ID: 37656017 [TBL] [Abstract][Full Text] [Related]
40. Light-Controlled Ultrafast Magnetic State Transition in Antiferromagnetic-Ferromagnetic van der Waals Heterostructures. Li S; Zhou L; Frauenheim T; He J J Phys Chem Lett; 2022 Jul; 13(26):6223-6229. PubMed ID: 35770897 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]