BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 36914797)

  • 21. HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions.
    Wang XT; Cui W; Peng C
    Nucleic Acids Res; 2017 Nov; 45(19):e163. PubMed ID: 28977529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatin-driven behavior of topologically associating domains.
    Ciabrelli F; Cavalli G
    J Mol Biol; 2015 Feb; 427(3):608-25. PubMed ID: 25280896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure.
    Ulianov SV; Galitsyna AA; Flyamer IM; Golov AK; Khrameeva EE; Imakaev MV; Abdennur NA; Gelfand MS; Gavrilov AA; Razin SV
    Epigenetics Chromatin; 2017 Jul; 10(1):35. PubMed ID: 28693562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finding Friends in the Crowd: Three-Dimensional Cliques of Topological Genomic Domains.
    Collas P; Liyakat Ali TM; Brunet A; Germier T
    Front Genet; 2019; 10():602. PubMed ID: 31275364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ldb1 complexes: the new master regulators of erythroid gene transcription.
    Love PE; Warzecha C; Li L
    Trends Genet; 2014 Jan; 30(1):1-9. PubMed ID: 24290192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New insights into the mechanisms of mammalian erythroid chromatin condensation and enucleation.
    Ji P
    Int Rev Cell Mol Biol; 2015; 316():159-82. PubMed ID: 25805124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation.
    Li Y; Schulz VP; Deng C; Li G; Shen Y; Tusi BK; Ma G; Stees J; Qiu Y; Steiner LA; Zhou L; Zhao K; Bungert J; Gallagher PG; Huang S
    Nucleic Acids Res; 2016 Sep; 44(15):7173-88. PubMed ID: 27141965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila.
    Ulianov SV; Doronin SA; Khrameeva EE; Kos PI; Luzhin AV; Starikov SS; Galitsyna AA; Nenasheva VV; Ilyin AA; Flyamer IM; Mikhaleva EA; Logacheva MD; Gelfand MS; Chertovich AV; Gavrilov AA; Razin SV; Shevelyov YY
    Nat Commun; 2019 Mar; 10(1):1176. PubMed ID: 30862957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitotic Implantation of the Transcription Factor Prospero via Phase Separation Drives Terminal Neuronal Differentiation.
    Liu X; Shen J; Xie L; Wei Z; Wong C; Li Y; Zheng X; Li P; Song Y
    Dev Cell; 2020 Feb; 52(3):277-293.e8. PubMed ID: 31866201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Unique Epigenomic Landscape Defines Human Erythropoiesis.
    Schulz VP; Yan H; Lezon-Geyda K; An X; Hale J; Hillyer CD; Mohandas N; Gallagher PG
    Cell Rep; 2019 Sep; 28(11):2996-3009.e7. PubMed ID: 31509757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crowded chromatin is not sufficient for heterochromatin formation and not required for its maintenance.
    Walter A; Chapuis C; Huet S; Ellenberg J
    J Struct Biol; 2013 Dec; 184(3):445-53. PubMed ID: 24145303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orchestration of late events in erythropoiesis by KLF1/EKLF.
    Gnanapragasam MN; Bieker JJ
    Curr Opin Hematol; 2017 May; 24(3):183-190. PubMed ID: 28157724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of topologically associating domain callers over mammals at high resolution.
    Sefer E
    BMC Bioinformatics; 2022 Apr; 23(1):127. PubMed ID: 35413815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The C-terminus of histone H2B is involved in chromatin compaction specifically at telomeres, independently of its monoubiquitylation at lysine 123.
    Wang CY; Hua CY; Hsu HE; Hsu CL; Tseng HY; Wright DE; Hsu PH; Jen CH; Lin CY; Wu MY; Tsai MD; Kao CF
    PLoS One; 2011; 6(7):e22209. PubMed ID: 21829450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation.
    Alvarez-Dominguez JR; Hu W; Yuan B; Shi J; Park SS; Gromatzky AA; van Oudenaarden A; Lodish HF
    Blood; 2014 Jan; 123(4):570-81. PubMed ID: 24200680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin in 3D distinguishes dMes-4/NSD and Hypb/dSet2 in protecting genes from H3K27me3 silencing.
    Depierre D; Perrois C; Schickele N; Lhoumaud P; Abdi-Galab M; Fosseprez O; Heurteau A; Margueron R; Cuvier O
    Life Sci Alliance; 2023 Nov; 6(11):. PubMed ID: 37684044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered chromatin occupancy of master regulators underlies evolutionary divergence in the transcriptional landscape of erythroid differentiation.
    Ulirsch JC; Lacy JN; An X; Mohandas N; Mikkelsen TS; Sankaran VG
    PLoS Genet; 2014 Dec; 10(12):e1004890. PubMed ID: 25521328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells.
    Novo CL; Tang C; Ahmed K; Djuric U; Fussner E; Mullin NP; Morgan NP; Hayre J; Sienerth AR; Elderkin S; Nishinakamura R; Chambers I; Ellis J; Bazett-Jones DP; Rugg-Gunn PJ
    Genes Dev; 2016 May; 30(9):1101-15. PubMed ID: 27125671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome Reorganization during Erythroid Differentiation.
    Ryzhkova A; Battulin N
    Genes (Basel); 2021 Jun; 12(7):. PubMed ID: 34208866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulatory association of long noncoding RNAs and chromatin accessibility facilitates erythroid differentiation.
    Ren Y; Zhu J; Han Y; Li P; Wu J; Qu H; Zhang Z; Fang X
    Blood Adv; 2021 Dec; 5(23):5396-5409. PubMed ID: 34644394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.