These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 36915346)
1. A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment. Shen H; He P; Ren Y; Huang Z; Li S; Wang G; Cong M; Luo D; Shao D; Lee EY; Cui R; Huo L; Qin J; Liu J; Hu Z; Liu Z; Zhang N Quant Imaging Med Surg; 2023 Mar; 13(3):1384-1398. PubMed ID: 36915346 [TBL] [Abstract][Full Text] [Related]
2. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment. Lee YS; Hong N; Witanto JN; Choi YR; Park J; Decazes P; Eude F; Kim CO; Chang Kim H; Goo JM; Rhee Y; Yoon SH Clin Nutr; 2021 Aug; 40(8):5038-5046. PubMed ID: 34365038 [TBL] [Abstract][Full Text] [Related]
3. Clinical evaluation of automated segmentation for body composition analysis on abdominal L3 CT slices in polytrauma patients. Ackermans LLGC; Volmer L; Timmermans QMMA; Brecheisen R; Damink SMWO; Dekker A; Loeffen D; Poeze M; Blokhuis TJ; Wee L; Ten Bosch JA Injury; 2022 Nov; 53 Suppl 3():S30-S41. PubMed ID: 35680433 [TBL] [Abstract][Full Text] [Related]
4. Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography. Park HJ; Shin Y; Park J; Kim H; Lee IS; Seo DW; Huh J; Lee TY; Park T; Lee J; Kim KW Korean J Radiol; 2020 Jan; 21(1):88-100. PubMed ID: 31920032 [TBL] [Abstract][Full Text] [Related]
5. A Deep Learning Model to Automate Skeletal Muscle Area Measurement on Computed Tomography Images. Amarasinghe KC; Lopes J; Beraldo J; Kiss N; Bucknell N; Everitt S; Jackson P; Litchfield C; Denehy L; Blyth BJ; Siva S; MacManus M; Ball D; Li J; Hardcastle N Front Oncol; 2021; 11():580806. PubMed ID: 34026597 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning-Based Fully Automated Segmentation of Regional Muscle Volume and Spatial Intermuscular Fat Using CT. Zhang R; He A; Xia W; Su Y; Jian J; Liu Y; Guo Z; Shi W; Zhang Z; He B; Cheng X; Gao X; Liu Y; Wang L Acad Radiol; 2023 Oct; 30(10):2280-2289. PubMed ID: 37429780 [TBL] [Abstract][Full Text] [Related]
7. Pediatric body composition based on automatic segmentation of computed tomography scans: a pilot study. Samim A; Spijkers S; Moeskops P; Littooij AS; de Jong PA; Veldhuis WB; de Vos BD; van Santen HM; Nievelstein RAJ Pediatr Radiol; 2023 Nov; 53(12):2492-2501. PubMed ID: 37640800 [TBL] [Abstract][Full Text] [Related]
8. Fully-automated sarcopenia assessment in head and neck cancer: development and external validation of a deep learning pipeline. Ye Z; Saraf A; Ravipati Y; Hoebers F; Zha Y; Zapaishchykova A; Likitlersuang J; Tishler RB; Schoenfeld JD; Margalit DN; Haddad RI; Mak RH; Naser M; Wahid KA; Sahlsten J; Jaskari J; Kaski K; Mäkitie AA; Fuller CD; Aerts HJWL; Kann BH medRxiv; 2023 Mar; ():. PubMed ID: 36945519 [TBL] [Abstract][Full Text] [Related]
9. Skeletal Muscle Segmentation at the Level of the Third Lumbar Vertebra (L3) in Low-Dose Computed Tomography: A Lightweight Algorithm. Zhao X; Du Y; Yue H Tomography; 2024 Sep; 10(9):1513-1526. PubMed ID: 39330757 [TBL] [Abstract][Full Text] [Related]
10. Automated segmentation of whole-body CT images for body composition analysis in pediatric patients using a deep neural network. Lee SB; Cho YJ; Yoon SH; Lee YY; Kim SH; Lee S; Choi YH; Cheon JE Eur Radiol; 2022 Dec; 32(12):8463-8472. PubMed ID: 35524785 [TBL] [Abstract][Full Text] [Related]
11. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography. Ha J; Park T; Kim HK; Shin Y; Ko Y; Kim DW; Sung YS; Lee J; Ham SJ; Khang S; Jeong H; Koo K; Lee J; Kim KW Sci Rep; 2021 Nov; 11(1):21656. PubMed ID: 34737340 [TBL] [Abstract][Full Text] [Related]
12. End-to-end automated body composition analyses with integrated quality control for opportunistic assessment of sarcopenia in CT. Nowak S; Theis M; Wichtmann BD; Faron A; Froelich MF; Tollens F; Geißler HL; Block W; Luetkens JA; Attenberger UI; Sprinkart AM Eur Radiol; 2022 May; 32(5):3142-3151. PubMed ID: 34595539 [TBL] [Abstract][Full Text] [Related]
13. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
14. Fully Automated Segmentation of Connective Tissue Compartments for CT-Based Body Composition Analysis: A Deep Learning Approach. Nowak S; Faron A; Luetkens JA; Geißler HL; Praktiknjo M; Block W; Thomas D; Sprinkart AM Invest Radiol; 2020 Jun; 55(6):357-366. PubMed ID: 32369318 [TBL] [Abstract][Full Text] [Related]
15. Deep learning for automatic segmentation of paraspinal muscle on computed tomography. Yao N; Li X; Wang L; Cheng X; Yu A; Li C; Wu K Acta Radiol; 2023 Feb; 64(2):596-604. PubMed ID: 35354336 [TBL] [Abstract][Full Text] [Related]
16. Validation of an automated segmentation method for body composition analysis in colorectal cancer patients using diagnostic abdominal computed tomography images. Querido NR; Bours MJL; Brecheisen R; Valkenburg-van Iersel L; Breukink SO; Janssen-Heijnen MLG; Keulen ETP; Konsten JLM; de Vos-Geelen J; Weijenberg MP; Simons CCJM Clin Nutr ESPEN; 2024 Oct; 63():659-667. PubMed ID: 39098602 [TBL] [Abstract][Full Text] [Related]
17. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation. Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images. Grainger AT; Krishnaraj A; Quinones MH; Tustison NJ; Epstein S; Fuller D; Jha A; Allman KL; Shi W Acad Radiol; 2021 Nov; 28(11):1481-1487. PubMed ID: 32771313 [TBL] [Abstract][Full Text] [Related]
19. Weaving attention U-net: A novel hybrid CNN and attention-based method for organs-at-risk segmentation in head and neck CT images. Zhang Z; Zhao T; Gay H; Zhang W; Sun B Med Phys; 2021 Nov; 48(11):7052-7062. PubMed ID: 34655077 [TBL] [Abstract][Full Text] [Related]
20. Self-derived organ attention for unpaired CT-MRI deep domain adaptation based MRI segmentation. Jiang J; Hu YC; Tyagi N; Wang C; Lee N; Deasy JO; Sean B; Veeraraghavan H Phys Med Biol; 2020 Oct; 65(20):205001. PubMed ID: 33027063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]