BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36915939)

  • 1. Characterization of physiochemical and nutrient profiles in canola feedstocks and co-products from bio-oil processing: impacted by source origin.
    de Oliveira AMRCB; Yu P
    Anim Biosci; 2023 Jul; 36(7):1044-1058. PubMed ID: 36915939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.
    Gamage IH; Jonker A; Zhang X; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():407-21. PubMed ID: 24076457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of ruminal degradation, intestinal digestion and total true nutrient supply to dairy cows from feedstocks and coproducts from Canola bio-oil processing: Impact by source origin.
    de Oliveira AMRCB; He J; Yu P
    J Anim Physiol Anim Nutr (Berl); 2024 May; 108(3):664-679. PubMed ID: 38223994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing.
    de Oliveira AMRCB; Yu P
    Anim Biosci; 2023 Mar; 36(3):451-460. PubMed ID: 35798035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage.
    Ji C; Zhang X; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 157():265-270. PubMed ID: 26702497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of intrinsic molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing: impacted by source origin.
    de Oliveira AMRCB; Yu P
    Anim Biosci; 2023 Feb; 36(2):256-263. PubMed ID: 35798034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of conditioning temperature and time during the pelleting process on feed molecular structure, pellet durability index, and metabolic features of co-products from bio-oil processing in dairy cows.
    Huang X; Christensen C; Yu P
    J Dairy Sci; 2015 Jul; 98(7):4869-81. PubMed ID: 25958276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of neutral detergent fiber digestibility estimation method on calculated energy concentration of canola meals from 12 Canadian processing plants.
    Arce-Cordero JA; Paula EM; Daniel JLP; Silva LG; Broderick GA; Faciola AP
    J Anim Sci; 2021 Nov; 99(11):. PubMed ID: 34694410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnitude Differences in Bioactive Compounds, Chemical Functional Groups, Fatty Acid Profiles, Nutrient Degradation and Digestion, Molecular Structure, and Metabolic Characteristics of Protein in Newly Developed Yellow-Seeded and Black-Seeded Canola Lines.
    Theodoridou K; Zhang X; Vail S; Yu P
    J Agric Food Chem; 2015 Jun; 63(22):5476-84. PubMed ID: 25996818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical profile, energy values, and protein molecular structure characteristics of biofuel/bio-oil co-products (carinata meal) in comparison with canola meal.
    Xin H; Yu P
    J Agric Food Chem; 2013 Apr; 61(16):3926-33. PubMed ID: 23581565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On a Molecular Basis, Investigate Association of Molecular Structure with Bioactive Compounds, Anti-Nutritional Factors and Chemical and Nutrient Profiles of Canola Seeds and Co-Products from Canola Processing: Comparison Crusher Plants within Canada and within China as well as between Canada and China.
    Gomaa WMS; Mosaad GM; Yu P
    Nutrients; 2018 Apr; 10(4):. PubMed ID: 29690527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of canola meal pellet conditioning temperature and time on ruminal and intestinal digestion, hourly effective degradation ratio, and potential nitrogen to energy synchronization in dairy cows.
    Huang X; Khan NA; Zhang X; Yu P
    J Dairy Sci; 2015 Dec; 98(12):8836-45. PubMed ID: 26409974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational spectroscopic study on feed molecular structure properties of oil-seeds and co-products from Canadian and Chinese bio-processing and relationship with protein and carbohydrate degradation fractions in ruminant systems.
    Gomaa WMS; Zhang X; Deng H; Peng Q; Mosaad GM; Zhang H; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():249-257. PubMed ID: 30904632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene-Silencing-Induced Changes in Carbohydrate Conformation in Relation to Bioenergy Value and Carbohydrate Subfractions in Modeled Plant (Medicago sativa) with Down-Regulation of HB12 and TT8 Transcription Factors.
    Li X; Hannoufa A; Zhang Y; Yu P
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research progress and future study on physicochemical, nutritional, and structural characteristics of canola and rapeseed feedstocks and co-products from bio-oil processing and nutrient modeling evaluation methods.
    Oliveira AMRCB; Yu P
    Crit Rev Food Sci Nutr; 2023; 63(23):6484-6490. PubMed ID: 35152796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes on a molecular basis of canola meal by conditioning temperature and time during pelleting process in relation to physiochemical (energy and protein) properties relevant to ruminants.
    Huang X; Zhang H; Yu P
    PLoS One; 2017; 12(2):e0170173. PubMed ID: 28207756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of FT/IR-ATR vibrational spectroscopy to reveal protein molecular structure of feedstock and co-products from Canadian and Chinese canola processing in relation to microorganism bio-degradation and enzyme bio-digestion.
    Gomaa WMS; Peng Q; Prates LL; Mosaad GM; Aamer H; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():791-797. PubMed ID: 30096732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical characterization, energy values, protein and carbohydrate fractions, degradation kinetics of frost damaged wheat (with severely overall weight loss) in ruminants.
    Yu P; Racz V
    Anim Sci J; 2009 Apr; 80(2):140-8. PubMed ID: 20163583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient profile and availability of co-products from bioethanol processing.
    Azarfar A; Jonker A; Hettiarachchi-Gamage IK; Yu P
    J Anim Physiol Anim Nutr (Berl); 2012 Jun; 96(3):450-8. PubMed ID: 21595756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of protein structure in combined feeds (hulless barley with bioethanol coproduct of wheat dried distillers grains with solubles) in relation to protein rumen degradation kinetics and intestinal availability in dairy cattle.
    Zhang X; Yu P
    J Dairy Sci; 2012 Jun; 95(6):3363-79. PubMed ID: 22612970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.