BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36916121)

  • 1. MONTE CARLO SIMULATION OF THE RADIATION SOURCE TERM FROM [18O]H2O CYCLOTRON TARGET BOMBARDMENT WITH PROTONS OF 16.5 MEV.
    Benavente-Castillo JA; da Silva TA; Fonseca TCF; Lacerda MAS
    Radiat Prot Dosimetry; 2023 Apr; 199(6):552-563. PubMed ID: 36916121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F-: activities and distribution in the [18F]FDG synthesis process.
    Bowden L; Vintró LL; Mitchell PI; O'Donnell RG; Seymour AM; Duffy GJ
    Appl Radiat Isot; 2009 Feb; 67(2):248-55. PubMed ID: 19111472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source term calculation and validation for
    Konheiser J; Müller SE; Magin A; Naumann B; Ferrari A
    J Radiol Prot; 2019 Sep; 39(3):906-919. PubMed ID: 31216517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.
    Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical shielding calculations for a proton therapy facility.
    Avery S; Ainsley C; Maughan R; McDonough J
    Radiat Prot Dosimetry; 2008; 131(2):167-79. PubMed ID: 18487617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerator driven neutron source design via beryllium target and
    Khorshidi A
    J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility.
    Infantino A; Valtieri L; Cicoria G; Pancaldi D; Mostacci D; Marengo M
    Phys Med; 2015 Dec; 31(8):991-996. PubMed ID: 26420444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements.
    Infantino A; Cicoria G; Lucconi G; Pancaldi D; Vichi S; Zagni F; Mostacci D; Marengo M
    Phys Med; 2016 Dec; 32(12):1602-1608. PubMed ID: 27919623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron measurements in the vicinity of a self-shielded PET cyclotron.
    Hertel NE; Shannon MP; Wang ZL; Valenzano MP; Mengesha W; Crowe RJ
    Radiat Prot Dosimetry; 2004; 108(3):255-61. PubMed ID: 15031447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study for the production of
    Tatari M; Dehghan Manshadi Z; Naik H
    Appl Radiat Isot; 2022 Oct; 188():110347. PubMed ID: 35792354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton irradiation of [18O]O2: production of [18F]F2 and [18F]F2 + [18F] OF2.
    Bishop A; Satyamurthy N; Bida G; Hendry G; Phelps M; Barrio JR
    Nucl Med Biol; 1996 Apr; 23(3):189-99. PubMed ID: 8782226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.
    De Smet V; Stichelbaut F; Vanaudenhove T; Mathot G; De Lentdecker G; Dubus A; Pauly N; Gerardy I
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):417-21. PubMed ID: 24255173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of (89)Zr production using the Monte Carlo code FLUKA.
    Infantino A; Cicoria G; Pancaldi D; Ciarmatori A; Boschi S; Fanti S; Marengo M; Mostacci D
    Appl Radiat Isot; 2011 Aug; 69(8):1134-7. PubMed ID: 21146416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.
    Hsu YC; Lai BL; Sheu RJ
    Radiat Prot Dosimetry; 2016 Jan; 168(1):124-33. PubMed ID: 25628454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of the secondary neutron field generated by a compact PET cyclotron with MCNP6 and experimental measurements.
    Alloni D; Prata M
    Appl Radiat Isot; 2017 Oct; 128():204-209. PubMed ID: 28735113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decommissioning of a Medical Cyclotron Vault: The Case Study of the National Cancer Institute of Milano.
    Pola A; Bortot D; Pasquato S; Mazzucconi D; Chiesa C; Zanellati F; Brusa A
    Health Phys; 2024 Aug; 127(2):276-286. PubMed ID: 38394553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluence correction factors in plastic phantoms for clinical proton beams.
    Palmans H; Symons JE; Denis JM; de Kock EA; Jones DT; Vynckier S
    Phys Med Biol; 2002 Sep; 47(17):3055-71. PubMed ID: 12361210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.