BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36916491)

  • 1. Bioorthogonal Activation of TLR7 Agonists Provokes Innate Immunity to Reinforce Aptamer-Based Checkpoint Blockade.
    Wei Y; Qin G; Wang Z; Zhao C; Ren J; Qu X
    ACS Nano; 2023 Mar; 17(6):5808-5820. PubMed ID: 36916491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade.
    Lee WS; Kim DS; Kim JH; Heo Y; Yang H; Go EJ; Kim JH; Lee SJ; Ahn BC; Yum JS; Chon HJ; Kim C
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies.
    Mullins SR; Vasilakos JP; Deschler K; Grigsby I; Gillis P; John J; Elder MJ; Swales J; Timosenko E; Cooper Z; Dovedi SJ; Leishman AJ; Luheshi N; Elvecrog J; Tilahun A; Goodwin R; Herbst R; Tomai MA; Wilkinson RW
    J Immunother Cancer; 2019 Sep; 7(1):244. PubMed ID: 31511088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PD-L1/TLR7 dual-targeting nanobody-drug conjugate mediates potent tumor regression via elevating tumor immunogenicity in a host-expressed PD-L1 bias-dependent way.
    Yu X; Long Y; Chen B; Tong Y; Shan M; Jia X; Hu C; Liu M; Zhou J; Tang F; Lu H; Chen R; Xu P; Huang W; Ren J; Wan Y; Sun J; Li J; Jin G; Gong L
    J Immunother Cancer; 2022 Oct; 10(10):. PubMed ID: 36253000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Nanotherapeutics for Cancer Immunotherapy by PD-L1-Aptamer-Functionalized and Fexofenadine-Loaded Albumin Nanoparticles.
    Lai X; Yao F; An Y; Li X; Yang XD
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lyophilizable and Multifaceted Toll-like Receptor 7/8 Agonist-Loaded Nanoemulsion for the Reprogramming of Tumor Microenvironments and Enhanced Cancer Immunotherapy.
    Kim SY; Kim S; Kim JE; Lee SN; Shin IW; Shin HS; Jin SM; Noh YW; Kang YJ; Kim YS; Kang TH; Park YM; Lim YT
    ACS Nano; 2019 Nov; 13(11):12671-12686. PubMed ID: 31589013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle-Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses.
    Nuhn L; De Koker S; Van Lint S; Zhong Z; Catani JP; Combes F; Deswarte K; Li Y; Lambrecht BN; Lienenklaus S; Sanders NN; David SA; Tavernier J; De Geest BG
    Adv Mater; 2018 Nov; 30(45):e1803397. PubMed ID: 30276880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer.
    Sato-Kaneko F; Yao S; Ahmadi A; Zhang SS; Hosoya T; Kaneda MM; Varner JA; Pu M; Messer KS; Guiducci C; Coffman RL; Kitaura K; Matsutani T; Suzuki R; Carson DA; Hayashi T; Cohen EE
    JCI Insight; 2017 Sep; 2(18):. PubMed ID: 28931759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy.
    Xiao Y; Zhu T; Zeng Q; Tan Q; Jiang G; Huang X
    Acta Biomater; 2023 Feb; 157():451-466. PubMed ID: 36442821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bispecific Aptamer-Based Recognition-then-Conjugation Strategy for PD1/PDL1 Axis Blockade and Enhanced Immunotherapy.
    Sun Y; Mo L; Hu X; Yu D; Xie S; Li J; Zhao Z; Fang X; Ye M; Qiu L; Tan W; Yang Y
    ACS Nano; 2022 Dec; 16(12):21129-21138. PubMed ID: 36484532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Masking of Synthetic Immunomodulator Evokes Antitumor Immunity With Reduced Immune Tolerance and Systemic Toxicity by Temporal Activity Recovery and Sustained Stimulation.
    Shin HS; Kim S; Jin SM; Yoo YJ; Heo JH; Lim YT
    Adv Mater; 2024 Mar; 36(9):e2309039. PubMed ID: 37903320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine.
    Kim H; Khanna V; Kucaba TA; Zhang W; Ferguson DM; Griffith TS; Panyam J
    Mol Pharm; 2019 Mar; 16(3):1200-1210. PubMed ID: 30620878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DSP-0509, a systemically available TLR7 agonist, exhibits combination effect with immune checkpoint blockade by activating anti-tumor immune effects.
    Ota Y; Nagai Y; Hirose Y; Hori S; Koga-Yamakawa E; Eguchi K; Sumida K; Murata M; Umehara H; Yamamoto S
    Front Immunol; 2023; 14():1055671. PubMed ID: 36793737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity.
    Chen SH; Dominik PK; Stanfield J; Ding S; Yang W; Kurd N; Llewellyn R; Heyen J; Wang C; Melton Z; Van Blarcom T; Lindquist KC; Chaparro-Riggers J; Salek-Ardakani S
    J Immunother Cancer; 2021 Oct; 9(10):. PubMed ID: 34599020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liposome-Based Co-Immunotherapy with TLR Agonist and CD47-SIRPĪ± Checkpoint Blockade for Efficient Treatment of Colon Cancer.
    Chang R; Chu X; Zhang J; Fu R; Feng C; Jia D; Wang R; Yan H; Li G; Li J
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic efficacy of cancer vaccine adjuvanted with nanoemulsion loaded with TLR7/8 agonist in lung cancer model.
    Koh J; Kim S; Lee SN; Kim SY; Kim JE; Lee KY; Kim MS; Heo JY; Park YM; Ku BM; Sun JM; Lee SH; Ahn JS; Park K; Yang S; Ha SJ; Lim YT; Ahn MJ
    Nanomedicine; 2021 Oct; 37():102415. PubMed ID: 34174421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Three-In-One Assembled Nanoparticle Containing Peptide-Radio-Sensitizer Conjugate and TLR7/8 Agonist Can Initiate the Cancer-Immunity Cycle to Trigger Antitumor Immune Response.
    Zhu X; Wang X; Li B; Zhang Y; Chen Y; Zhang W; Wang Y; Zhai W; Liu Z; Liu S; Sun J; Chen Z; Gao Y
    Small; 2022 May; 18(20):e2107001. PubMed ID: 35434938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis.
    Kim S; Kim SA; Nam GH; Hong Y; Kim GB; Choi Y; Lee S; Cho Y; Kwon M; Jeong C; Kim S; Kim IS
    J Immunother Cancer; 2021 Jan; 9(1):. PubMed ID: 33479026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjuvant Effect of Toll-Like Receptor 9 Activation on Cancer Immunotherapy Using Checkpoint Blockade.
    Chuang YC; Tseng JC; Huang LR; Huang CM; Huang CF; Chuang TH
    Front Immunol; 2020; 11():1075. PubMed ID: 32547560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liposomal co-delivery of toll-like receptors 3 and 7 agonists induce a hot triple-negative breast cancer immune environment.
    Nguyen BL; Phung CD; Pham DV; Le ND; Jeong JH; Kim J; Kim JH; Chang JH; Jin SG; Choi HG; Ku SK; Kim JO
    J Control Release; 2023 Sep; 361():443-454. PubMed ID: 37558053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.